• 《工程索引》(EI)刊源期刊
    • 中文核心期刊
    • 中國科技論文統計源期刊
    • 中國科學引文數據庫來源期刊

    留言板

    尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

    姓名
    郵箱
    手機號碼
    標題
    留言內容
    驗證碼

    單寧酸復配緩蝕劑的成膜特性及緩蝕性

    方濤 張博威 張展 王怡 彭光春 黃康 張天翼

    方濤, 張博威, 張展, 王怡, 彭光春, 黃康, 張天翼. 單寧酸復配緩蝕劑的成膜特性及緩蝕性[J]. 工程科學學報, 2019, 41(12): 1527-1535. doi: 10.13374/j.issn2095-9389.2019.06.03.002
    引用本文: 方濤, 張博威, 張展, 王怡, 彭光春, 黃康, 張天翼. 單寧酸復配緩蝕劑的成膜特性及緩蝕性[J]. 工程科學學報, 2019, 41(12): 1527-1535. doi: 10.13374/j.issn2095-9389.2019.06.03.002
    FANG Tao, ZHANG Bo-wei, ZHANG Zhan, WANG Yi, PENG Guang-chun, HUANG Kang, ZHANG Tian-yi. Tannic acid compound as a corrosion inhibitor: film-forming characteristics and corrosion resistance[J]. Chinese Journal of Engineering, 2019, 41(12): 1527-1535. doi: 10.13374/j.issn2095-9389.2019.06.03.002
    Citation: FANG Tao, ZHANG Bo-wei, ZHANG Zhan, WANG Yi, PENG Guang-chun, HUANG Kang, ZHANG Tian-yi. Tannic acid compound as a corrosion inhibitor: film-forming characteristics and corrosion resistance[J]. Chinese Journal of Engineering, 2019, 41(12): 1527-1535. doi: 10.13374/j.issn2095-9389.2019.06.03.002

    單寧酸復配緩蝕劑的成膜特性及緩蝕性

    doi: 10.13374/j.issn2095-9389.2019.06.03.002
    基金項目: 國家自然科學基金資助項目(50701006,51271031);國家重點基礎研究發展計劃資助項目(2014CB643300)
    詳細信息
      通訊作者:

      E-mail: bwzhang@ustb.edu.cn

    • 中圖分類號: TG174.42

    Tannic acid compound as a corrosion inhibitor: film-forming characteristics and corrosion resistance

    More Information
    • 摘要: 單寧酸由于環保、價格低的特點在金屬保護方面應用廣泛,然而單一利用單寧酸作為緩蝕劑取得的效果有限,有研究表明鹽類與緩蝕劑復配可以改善緩蝕劑的緩蝕效果。在此基礎上進行單寧酸復配緩蝕劑的研究,采用兩種復配劑氯化鐵、鉬酸鈉分別與單寧酸(TA)緩蝕劑進行復配,研究其對碳鋼Q235的緩蝕效果。通過硫酸銅點滴實驗、浸泡實驗、電化學實驗對比氯化鐵、鉬酸鈉分別與單寧酸復配后在碳鋼表面的成膜特性及緩蝕效果。硫酸銅點滴液變色時間隨著單寧酸中氯化鐵和鉬酸鈉兩種化合物濃度的升高出現先增加后降低的趨勢;浸泡實驗可以看出在單寧酸中加入氯化鐵和鉬酸鈉后,碳鋼表面僅出現個別點蝕坑;根據電化學測試結果,對比加入氯化鐵前后單寧酸緩蝕劑對碳鋼的緩蝕效果,發現兩者的電荷轉移電阻由2698變為3711 Ω·cm2,腐蝕電流密度由2.734降為1.902 μA·cm?2。加入鉬酸鈉后,電荷轉移電阻和腐蝕電流密度存在明顯的增加與下降,電荷轉移電阻由2698變為5100 Ω·cm2,腐蝕電流密度由2.734降為0.714 μA·cm?2。在單寧酸中添加氯化鐵和鉬酸鈉都能改善單寧酸的緩蝕效果,其中單寧酸與鉬酸鈉復配的緩蝕效果更好。

       

    • 圖  1  TA和TA轉化膜的傅里葉變換紅外光譜

      Figure  1.  Fourier transform infrared spectra of tannic acid (TA) and TA conversion film

      圖  2  單寧酸成膜原理圖

      Figure  2.  Schematic diagram of TA film formation

      圖  3  TA質量濃度和轉化時間對單寧酸轉化膜耐蝕性能的影響

      Figure  3.  Effect of TA mass concentration and conversion time on the corrosion resistance of TA conversion coatings

      圖  4  單寧酸轉化膜表面形貌圖. (a) 光鏡圖;(b) 致密區掃描電鏡圖;(c)缺陷區掃描電鏡圖

      Figure  4.  Surface morphology of TA conversion film: (a) OM image; (b) SEM image of dense areas; (c) SEM image of defect area

      圖  5  單寧酸中添加不同量FeCl3后轉化膜的電鏡形貌圖. (a) 0;(b) 0.01 g?L?1;(c) 0.03 g?L?1;(d) 0.05 g?L?1;(e) 0.07 g?L?1;(f) 0.1 g?L?1

      Figure  5.  SEM images of conversion films with different amounts of FeCl3 in TA: (a) 0; (b) 0.01 g?L?1; (c) 0.03 g?L?1; (d) 0.05 g?L?1; (e) 0.07 g?L?1; (f) 0.1 g?L?1

      圖  6  單寧酸中添加不同量FeCl3后轉化膜的光鏡形貌圖. (a) 0;(b) 0.01 g?L?1;(c) 0.03 g?L?1;(d) 0.05 g?L?1;(e) 0.07 g?L?1;(f) 0.1 g?L?1

      Figure  6.  OM images of conversion films with different amounts of FeCl3 in TA: (a) 0; (b) 0.01 g?L?1; (c) 0.03 g?L?1; (d) 0.05 g?L?1; (e) 0.07 g?L?1; (f) 0.1 g?L?1

      圖  7  硫酸銅變色時間隨氯化鐵質量濃度變化圖

      Figure  7.  Chromogenic time of copper sulfate changing with the concentration of FeCl3

      圖  8  單寧酸中添加不同量Na2MoO4后轉化膜的掃描電鏡形貌圖. (a) 0;(b) 0.05 g?L?1;(c) 0.10 g?L?1;(d) 0.15 g?L?1;(e) 0.20 g?L?1;(f) 0.30 g?L?1

      Figure  8.  SEM images of conversion films with different amounts of Na2MoO4 in TA: (a) 0; (b) 0.05 g?L?1; (c) 0.10 g?L?1; (d) 0.15 g?L?1; (e) 0.20 g?L?1; (f) 0.30 g?L?1

      圖  9  單寧酸中添加不同量Na2MoO4后轉化膜的光鏡形貌圖. (a) 0;(b) 0.05 g?L?1;(c) 0.10 g?L?1;(d) 0.15 g?L?1;(e) 0.20 g?L?1;(f) 0.30 g?L?1

      Figure  9.  OM images of conversion films with different amounts of Na2MoO4 in TA: (a) 0; (b) 0.05 g?L?1; (c) 0.10 g?L?1; (d) 0.15 g?L?1; (e) 0.20 g?L?1; (f) 0.30 g?L?1

      圖  10  硫酸銅變色時間隨鉬酸鈉質量濃度變化圖

      Figure  10.  Chromogenic time of copper sulfate changing with the mass concentration of Na2MoO4

      圖  11  不同單寧酸體系轉化膜的阻抗譜. (a) Nyquist;(b) 阻抗的膜值∣z∣;(c) 相位角

      Figure  11.  Electrochemical impedance parameters of TA conversion films in different systems: (a) Nyquist diagram; (b) Bode diagram; (c) phase angle diagram

      圖  12  等效電路

      Figure  12.  Equivalent circuit model

      圖  13  單寧酸體系轉化膜極化曲線

      Figure  13.  Polarization curves of TA conversion film in different systems

      表  1  浸泡實驗對比圖表

      Table  1.   Comparison of soaking test

      緩蝕劑5 min10 min15 min30 min
      TA
      TA/Fe3+
      TA/${\rm{MoO}}_4^{2 - }$
      下載: 導出CSV

      表  2  電化學擬合參數

      Table  2.   Electrochemical fitting parameters

      緩蝕劑Rs/(Ω·cm2)Rct/(Ω·cm2)CPE
      Y/(10?5 S·sn·cm?2)n
      30.1141680.40.84
      TA18.3269878.40.78
      TA/Fe3+16.5371134.50.75
      ${\rm{TA}}/{\rm{MoO}}_4^{2 - }$13.2510025.00.80
      下載: 導出CSV

      表  3  極化曲線擬合數據

      Table  3.   Polarization curve fitting data

      緩蝕劑Ecorr/VIcorr/(μA·cm?2)βaβcRp/(Ω·cm?2)
      ?0.8626.012113.8217.55396
      TA?0.8312.734121.2137.010213
      TA/Fe3+?0.8591.902144.3104.913867
      ${\rm{TA}}/{\rm{MoO}}_4^{2 - }$?0.7830.714167.349.023048
      下載: 導出CSV
      中文字幕在线观看
    • [1] Lei Y D, Tang Z H, Liao R J, et al. Hydrolysable tannin as environmentally friendly reducer and stabilizer for graphene oxide. Green Chem, 2011, 13(7): 1655 doi: 10.1039/c1gc15081b
      [2] Li D D, Cai C, Yang M, et al. Progress in the application of tannic acid to the functional materials. Chin Polym Bull, 2017(9): 10

      李冬冬, 蔡超, 楊萌, 等. 基于單寧酸的功能材料研究進展. 高分子通報, 2017(9):10
      [3] Wang J K, Liu B C, Cai L, et al. A chemical conversion film of tannic acid on A3 steel. J Nanjing Univ Chem Technol, 1996, 18(3): 54

      王濟奎, 劉寶春, 蔡璐, 等. A3鋼表面的單寧酸化學轉化膜. 南京化工大學學報, 1996, 18(3):54
      [4] Kusmierek E, Chrzescijanska E. Tannic acid as corrosion inhibitor for metals and alloys. Mater Corros, 2015, 66(2): 169 doi: 10.1002/maco.201307277
      [5] Wu S C. The application of tannic on surface technology. Surf Technol, 2000, 29(2): 36 doi: 10.3969/j.issn.1001-3660.2000.02.014

      吳雙成. 單寧酸在表面處理中的應用. 表面技術, 2000, 29(2):36 doi: 10.3969/j.issn.1001-3660.2000.02.014
      [6] Ma Z H, Lu Z B, Shi B. Chemical properties and application of tannic acid. Nat Prod Res Dev, 2003, 15(1): 87 doi: 10.3969/j.issn.1001-6880.2003.01.023

      馬志紅, 陸忠兵, 石碧. 單寧酸的化學性質及應用. 天然產物研究與開發, 2003, 15(1):87 doi: 10.3969/j.issn.1001-6880.2003.01.023
      [7] Hou Y C. Preparation and Biological Properties of the Conversion Coating on the AZ60 Magnesium Alloy[Dissertation]. Changchun: Jilin University, 2015

      侯泳村. AZ60鎂合金表面轉化膜的制備及生物性能研究[學位論文]. 長春: 吉林大學, 2015
      [8] Zhang S F, Zhang R F, Li W K, et al. Effects of tannic acid on properties of anodic coatings obtained by micro arc oxidation on AZ91 magnesium alloy. Surf Coat Technol, 2012, 207: 170 doi: 10.1016/j.surfcoat.2012.06.056
      [9] Zhang Z G, Ma Q L. Application of modified tannic inhibitor in the iron relics. Surf Technol, 2017, 46(2): 27

      張治國, 馬清林. 單寧酸復配緩蝕劑在鐵質文物上的應用研究. 表面技術, 2017, 46(2):27
      [10] Xu W H, Han E H, Wang Z Y. Effect of tannic acid on corrosion behavior of carbon steel in NaCl solution. J Mater Sci Technol, 2019, 35(1): 64 doi: 10.1016/j.jmst.2018.09.001
      [11] Hao Y S, Sani L A, Ge T J, et al. The synergistic inhibition behaviour of tannic acid and iodide ions on mild steel in H2SO4 solutions. Corros Sci, 2017, 123: 158 doi: 10.1016/j.corsci.2017.05.001
      [12] Yü Y C, Li N, Hu H L, et al. Research development of non-chromate and tri-chromium passivation. Surf Technol, 2005, 34(5): 6 doi: 10.3969/j.issn.1001-3660.2005.05.002

      于元春, 李寧, 胡會利, 等. 無鉻鈍化與三價鉻鈍化的研究進展. 表面技術, 2005, 34(5):6 doi: 10.3969/j.issn.1001-3660.2005.05.002
      [13] Yang L H, Li J Q, Yu X, et al. Molybdate conversion coatings on AZ31 magnesium alloy. Chin J Nonferrous Met, 2008, 18(7): 1211 doi: 10.3321/j.issn:1004-0609.2008.07.007

      楊黎暉, 李峻青, 于湘, 等. AZ31鎂合金鉬酸鹽轉化膜. 中國有色金屬學報, 2008, 18(7):1211 doi: 10.3321/j.issn:1004-0609.2008.07.007
      [14] Gong L, Lu Y P. Modification and corrosion resistance of molybdate passivation film on hot dip galvanized steel sheet. J Iron Steel Res, 2007, 19(3): 88 doi: 10.3321/j.issn:1001-0963.2007.03.022

      宮麗, 盧燕平. 熱鍍鋅鋼板鉬酸鹽鈍化膜的改性及耐蝕性. 鋼鐵研究學報, 2007, 19(3):88 doi: 10.3321/j.issn:1001-0963.2007.03.022
      [15] Wu D, Liu G J, Sun R Y, et al. Investigation of structural characteristics of thermally metamorphosed coal by FTIR spectroscopy and X-ray diffraction. Energy Fuels, 2013, 27(10): 5823 doi: 10.1021/ef401276h
      [16] Painter P, Starsinic M, Coleman M. Determination of functional groups in coal by Fourier transform interferometry. Fourier Transform Infrared Spectrosc, 1985, 12(2): 169
      [17] Painter P C, Snyder R W, Starsinic M, et al. Concerning the application of FT-IR to the study of coal: a critical assessment of band assignments and the application of spectral analysis programs. Appl Spectrosc, 1981, 35(5): 475 doi: 10.1366/0003702814732256
      [18] Ross T K, Francis R A. The treatment of rusted steel with mimosa tannin. Corros Sci, 1978, 18(4): 351 doi: 10.1016/S0010-938X(78)80049-3
      [19] Hung H M, Linh D K, Chinh N T, et al. Improvement of the corrosion protection of polypyrrole coating for CT3 mild steel with 10-camphorsulfonic acid and molybdate as inhibitor dopants. Prog Org Coat, 2019, 131: 407 doi: 10.1016/j.porgcoat.2019.03.006
      [20] Rammelt U, Duc L M, Plieth W. Improvement of protection performance of polypyrrole by dopant anions. J Appl Electrochem, 2005, 35(12): 1225 doi: 10.1007/s10800-005-9033-7
    • 加載中
    圖(13) / 表(3)
    計量
    • 文章訪問數:  1520
    • HTML全文瀏覽量:  1684
    • PDF下載量:  55
    • 被引次數: 0
    出版歷程
    • 收稿日期:  2019-06-03
    • 刊出日期:  2019-12-01

    目錄

      /

      返回文章
      返回