• 《工程索引》(EI)刊源期刊
    • 中文核心期刊
    • 中國科技論文統計源期刊
    • 中國科學引文數據庫來源期刊

    留言板

    尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

    姓名
    郵箱
    手機號碼
    標題
    留言內容
    驗證碼

    鉬鎢釩合金化熱作模具鋼高溫回火組織演變

    李爽 時彥林 楊曉彩 石永亮 王真 張士憲 施淵吉 吳曉春

    李爽, 時彥林, 楊曉彩, 石永亮, 王真, 張士憲, 施淵吉, 吳曉春. 鉬鎢釩合金化熱作模具鋼高溫回火組織演變[J]. 工程科學學報, 2020, 42(7): 902-911. doi: 10.13374/j.issn2095-9389.2019.06.04.003
    引用本文: 李爽, 時彥林, 楊曉彩, 石永亮, 王真, 張士憲, 施淵吉, 吳曉春. 鉬鎢釩合金化熱作模具鋼高溫回火組織演變[J]. 工程科學學報, 2020, 42(7): 902-911. doi: 10.13374/j.issn2095-9389.2019.06.04.003
    LI Shuang, SHI Yan-lin, YANG Xiao-cai, SHI Yong-liang, WANG Zhen, ZHANG Shi-xian, SHI Yuan-ji, WU Xiao-chun. Microstructural evolution of Mo?W?V alloyed hot-work die steel during high-temperature tempering[J]. Chinese Journal of Engineering, 2020, 42(7): 902-911. doi: 10.13374/j.issn2095-9389.2019.06.04.003
    Citation: LI Shuang, SHI Yan-lin, YANG Xiao-cai, SHI Yong-liang, WANG Zhen, ZHANG Shi-xian, SHI Yuan-ji, WU Xiao-chun. Microstructural evolution of Mo?W?V alloyed hot-work die steel during high-temperature tempering[J]. Chinese Journal of Engineering, 2020, 42(7): 902-911. doi: 10.13374/j.issn2095-9389.2019.06.04.003

    鉬鎢釩合金化熱作模具鋼高溫回火組織演變

    doi: 10.13374/j.issn2095-9389.2019.06.04.003
    基金項目: 河北省教育廳青年基金資助項目(QN2020257,QN2018221);河北工業職業技術學院博士基金資助項目(BZ201801)
    詳細信息
      通訊作者:

      E-mail: sylyyyy@163.com

    • 中圖分類號: TG142.1

    Microstructural evolution of Mo?W?V alloyed hot-work die steel during high-temperature tempering

    More Information
    • 摘要: 為適應熱沖壓技術的發展需求,開發了一種新型高熱導率高耐磨性能熱沖壓用模具鋼材料。采用掃描電鏡(SEM)、透射電鏡(TEM)等檢測手段對鉬鎢釩合金化新型模具鋼的高溫回火性能與組織特征進行了研究。闡明了新型熱沖壓模具鋼回火過程碳化物析出與演變規律。實驗結果表明:實驗用鉬鎢釩合金化模具鋼材料具有良好的回火二次硬化性能,在500~600 ℃溫度區間回火時,回火組織硬度上升;在600 ℃回火出現二次硬化峰值;當回火溫度超過600 ℃后,組織軟化程度明顯,回火硬度開始下降。實驗模具鋼在高溫回火過程中的硬度變化與其合金碳化物的偏聚、析出和聚集長大密切相關。當在560 ℃以下回火時,實驗鋼組織中未有合金碳化物析出;當回火溫度大于560 ℃時,回火組織中開始析出M2C型碳化物;當回火溫度高于600 ℃后開始析出MC型碳化物;當在620 ℃長時間回火后M2C型碳化物轉化為M6C型碳化物,此時實驗鋼硬度開始明顯下降;而當回火溫度高于660 ℃時,新型實驗鋼組織中主要為M6C和MC型合金碳化物。

       

    • 圖  1  實驗鋼回火硬度曲線

      Figure  1.  Tempering hardness curve of the test steel

      圖  2  不同熱處理后組織掃描電鏡照片。(a)淬火態;(b)560 ℃回火;(c)600 ℃回火;(d)620 ℃回火;(e)640 ℃回火;(f)700 ℃回火

      Figure  2.  SEM images of microstructure after heat treatment: (a) after quenching; (b) tempering at 560 ℃; (c) tempering at 600 ℃; (d) tempering at 620 ℃; (e) tempering at 640 ℃; (f) tempering at 700 ℃

      圖  3  回火組織掃描電鏡照片。(a)600 ℃;(b)640 ℃;(c)700 ℃

      Figure  3.  SEM images of tempering microstructure: (a) 600 ℃; (b) 640 ℃; (c) 700 ℃

      圖  4  520 ℃回火保溫60 h后的基體組織的透射電鏡照片。(a)明場;(b)暗場相和對應衍射斑點

      Figure  4.  TEM images of microstructure after tempering for 60 h at 520 ℃: (a) bright-field image; (b) dark-field image and diffraction patterns

      圖  5  560 ℃回火保溫60 h后的基體組織的透射電鏡照片。(a)明場;(b)暗場像和對應的衍射斑點

      Figure  5.  TEM images of microstructure after tempering for 60 h at 560 ℃: (a) bright-field image; (b) dark-field image and diffraction patterns

      圖  6  600 ℃回火保溫4 h后的基體組織的M2C型碳化物透射電鏡照片。(a)明場;(b)暗場像和對應的衍射斑點

      Figure  6.  TEM images of M2C carbides in microstructure after tempering for 4 h at 600 ℃: (a) bright-field image; (b) dark-field image and diffraction patterns

      圖  7  600 ℃回火保溫4 h后的基體組織的MC型碳化物透射電鏡照片。(a)明場;(b)暗場像和對應的衍射斑點

      Figure  7.  TEM images of MC carbides in microstructure after tempering for 4 h at 600 ℃: (a) bright-field image; (b) dark-field image and diffraction patterns

      圖  8  620 ℃回火保溫4 h后的基體組織中碳化物透射電鏡照片。(a)明場;(b)暗場像和對應的衍射斑點

      Figure  8.  TEM images of carbides in microstructure after tempering for 4 h at 620 ℃: (a) bright-field image; (b) dark-field image and diffraction patterns

      圖  9  620 ℃回火保溫20 h后的基體組織的M6C型碳化物透射電鏡照片。(a)明場;(b)暗場像對應的衍射斑點

      Figure  9.  TEM images of M6C carbides in microstructure after tempering for 20 h at 620 ℃: (a) bright-field image; (b) dark-field image and diffraction patterns

      圖  10  660 ℃回火保溫4 h后的基體組織的M6C型碳化物透射電鏡照片。(a)明場;(b)暗場像和對應的衍射斑點

      Figure  10.  TEM images of M6C carbides in microstructure of test steel after tempering for 4 h at 660 ℃: (a) bright-field image; (b) dark-field image and diffraction patterns

      表  1  實驗鋼成分(質量分數)

      Table  1.   Composition of the test steel %

      CSiMnCrMoWVPSFe
      0.480.100.080.132.991.700.860.010.02Bal.
      下載: 導出CSV
      中文字幕在线观看
    • [1] Cui K. Present condition and developing direction of die steels in China. Mater Mech Eng, 2001, 25(1): 1 doi: 10.3969/j.issn.1000-3738.2001.01.003

      崔崑. 中國模具鋼現狀及發展(Ⅰ). 機械工程材料, 2001, 25(1):1 doi: 10.3969/j.issn.1000-3738.2001.01.003
      [2] Mao M T, Guo H J, Sun X L, et al. Recent progress on primary carbides in AISI H13 hot work mold steel. Chin J Eng, 2018, 40(11): 1288

      毛明濤, 郭漢杰, 孫曉林, 等. H13熱作模具鋼中液析碳化物的研究進展. 工程科學學報, 2018, 40(11):1288
      [3] Li S, Wu X C, Li X X, et al. High temperature performance of a Mo-W type hot work die steel of high thermal conductivity. Chin J Mater Res, 2017, 31(1): 32 doi: 10.11901/1005.3093.2016.037

      李爽, 吳曉春, 黎欣欣, 等. 鉬鎢系高導熱率熱作模具鋼高溫性能. 材料研究學報, 2017, 31(1):32 doi: 10.11901/1005.3093.2016.037
      [4] Li S, Wu X C, Chen S H, et al. Wear resistance of H13 and a new hot-work die steel at high temperature. J Mater Eng Perform, 2016, 25(7): 2993 doi: 10.1007/s11665-016-2124-2
      [5] Li S, Zhou L H, Wu X C, et al. The influence of thermal conductivity of die material on the efficiency of hot-stamping process. J Mater Eng Perform, 2016, 25(11): 4848 doi: 10.1007/s11665-016-2332-9
      [6] Chen S H, Li S, Wu X C. High temperature friction and wear property of hot stamping tool steel SDCM. Tribology, 2016, 36(5): 538

      陳士浩, 李爽, 吳曉春. 熱沖壓模具鋼SDCM高溫摩擦磨損性能. 摩擦學學報, 2016, 36(5):538
      [7] Chen Y W, Wu X C, Song W W, et al. Effect of carbide evolution on thermal-stability in Nb-microalloyed hot work steel. Trans Mater Heat Treat, 2010, 31(5): 75

      陳英偉, 吳曉春, 宋雯雯, 等. 含鈮熱作模具鋼中碳化物的演變對熱穩定性的影響. 材料熱處理學報, 2010, 31(5):75
      [8] Liu Q D, Liu W Q, Wang Z M, et al. 3D atom probe characterazation of alloy carbides in tempering martenite Ⅰ. Nucleation. Acta Metall Sinica, 2009, 45(11): 1281

      劉慶冬, 劉文慶, 王澤民, 等. 回火馬氏體中合金碳化物的3D原子探針表征Ⅰ. 形核. 金屬學報, 2009, 45(11):1281
      [9] Kaschnitz E, Hofer P, Funk W. Thermophysical properties of a hot-work tool-steel with high thermal conductivity. Int J Thermophys, 2013, 34(5): 843 doi: 10.1007/s10765-012-1162-8
      [10] Chen J D, Mo W L, Wang P, et al. Effects of tempering temperature on the impact toughness of steel 42CrMo. Acta Metall Sinica, 2012, 48(10): 1186 doi: 10.3724/SP.J.1037.2012.00340

      陳俊丹, 莫文林, 王培, 等. 回火溫度對42CrMo鋼沖擊韌性的影響. 金屬學報, 2012, 48(10):1186 doi: 10.3724/SP.J.1037.2012.00340
      [11] Li Z J, Xiao N M, Li D Z, et al. Influence of microstructure on impact toughness of G18CrMo2-6 steel during tempering. Acta Metall Sinica, 2014, 50(7): 777

      李振江, 肖納敏, 李殿中, 等. G18CrMo2-6鋼回火組織及沖擊韌性研究. 金屬學報, 2014, 50(7):777
      [12] Min N, Shi N N, Shen Y L, et al. Internal friction investigation on thermal-stability of martensitic hot work steel. Trans Mater Heat Treat, 2012, 33(2): 96

      閔娜, 石楠楠, 沈赟靚, 等. 馬氏體熱作模具鋼熱穩定性的內耗研究. 材料熱處理學報, 2012, 33(2):96
      [13] 朱春燕, 石楠楠, 左鵬鵬, 等. Mn 和 W 元素對 4Cr2Mo2W2V 模具鋼熱穩定性的影響. 材料熱處理學報, 2014, 35(增刊2):66)

      Zhu C Y, Shi N N, Zuo P P, et al. Effect of Mn and W on thermal stability of 4Cr2Mo2W2V die steel. Trans Mater Heat Treat, 2014, 35(增刊2): 66
      [14] Medvedeva A, Bergstr?m J, Gunnarsson S, et al. High-temperature properties and microstructural stability of hot-work tool steels. Mater Sci Eng A, 2009, 523(1-2): 39 doi: 10.1016/j.msea.2009.06.010
      [15] Michaud P, Delagnes D, Lamesle P, et al. The effect of the addition of alloying elements on carbide precipitation and mechanical properties in 5% chromium martensitic steels. Acta Mater, 2007, 55(14): 4877 doi: 10.1016/j.actamat.2007.05.004
      [16] Chen Y, Chen Z Z, Dong H, et al. Adavance in research of tempering secondary hardening of alloy tool and die steel Fe-M-C quenched martensite. Special Steel, 2004, 25(2): 35 doi: 10.3969/j.issn.1003-8620.2004.02.012

      陳鷹, 陳再枝, 董瀚, 等. 合金工模具鋼Fe-M-C淬火馬氏體回火的二次硬化研究進展. 特殊鋼, 2004, 25(2):35 doi: 10.3969/j.issn.1003-8620.2004.02.012
      [17] Liu Q D, Peng J C, Liu W Q, et al. 3D atom probe characterazation of alloy carbides in temperature martenite Ⅱ. Growth. Acta Metall Sinica, 2009, 45(11): 1288 doi: 10.3321/j.issn:0412-1961.2009.11.003

      劉慶冬, 彭劍超, 劉文慶, 等. 回火馬氏體中合金碳化物的3D原子探針表征Ⅱ. 長大. 金屬學報, 2009, 45(11):1288 doi: 10.3321/j.issn:0412-1961.2009.11.003
      [18] Liu Q D, Chu Y L, Wang Z M, et al. 3D atom probe characterization of alloying elements partitioning in cementite of Nb-V microalloying steel. Acta Metall Sinica, 2008, 44(11): 1281 doi: 10.3321/j.issn:0412-1961.2008.11.001

      劉慶冬, 褚于良, 王澤民, 等. Nb-V微合金鋼中滲碳體周圍元素分布的三維原子探針表征. 金屬學報, 2008, 44(11):1281 doi: 10.3321/j.issn:0412-1961.2008.11.001
    • 加載中
    圖(10) / 表(1)
    計量
    • 文章訪問數:  1345
    • HTML全文瀏覽量:  1184
    • PDF下載量:  42
    • 被引次數: 0
    出版歷程
    • 收稿日期:  2019-06-04
    • 刊出日期:  2020-07-01

    目錄

      /

      返回文章
      返回