• 《工程索引》(EI)刊源期刊
    • 中文核心期刊
    • 中國科技論文統計源期刊
    • 中國科學引文數據庫來源期刊

    留言板

    尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

    姓名
    郵箱
    手機號碼
    標題
    留言內容
    驗證碼

    4Cr5MoSiV1熱作模具鋼700 ℃的低周疲勞行為

    趙超 黃進峰 張津 解國良 連勇 李德晨 馬旻昱 張尊君 高文 張程

    趙超, 黃進峰, 張津, 解國良, 連勇, 李德晨, 馬旻昱, 張尊君, 高文, 張程. 4Cr5MoSiV1熱作模具鋼700 ℃的低周疲勞行為[J]. 工程科學學報, 2020, 42(5): 602-611. doi: 10.13374/j.issn2095-9389.2019.06.10.004
    引用本文: 趙超, 黃進峰, 張津, 解國良, 連勇, 李德晨, 馬旻昱, 張尊君, 高文, 張程. 4Cr5MoSiV1熱作模具鋼700 ℃的低周疲勞行為[J]. 工程科學學報, 2020, 42(5): 602-611. doi: 10.13374/j.issn2095-9389.2019.06.10.004
    ZHAO Chao, HUANG Jin-feng, ZHANG Jin, XIE Guo-liang, LIAN Yong, LI De-chen, MA Min-yu, ZHANG Zun-jun, GAO Wen, ZHANG Cheng. Low-cycle fatigue behavior of 4Cr5MoSiV1 hot-work die steel at 700 ℃[J]. Chinese Journal of Engineering, 2020, 42(5): 602-611. doi: 10.13374/j.issn2095-9389.2019.06.10.004
    Citation: ZHAO Chao, HUANG Jin-feng, ZHANG Jin, XIE Guo-liang, LIAN Yong, LI De-chen, MA Min-yu, ZHANG Zun-jun, GAO Wen, ZHANG Cheng. Low-cycle fatigue behavior of 4Cr5MoSiV1 hot-work die steel at 700 ℃[J]. Chinese Journal of Engineering, 2020, 42(5): 602-611. doi: 10.13374/j.issn2095-9389.2019.06.10.004

    4Cr5MoSiV1熱作模具鋼700 ℃的低周疲勞行為

    doi: 10.13374/j.issn2095-9389.2019.06.10.004
    基金項目: 北京市重點實驗室基金資助項目(SYS100080419)
    詳細信息
      通訊作者:

      E-mail:ustbhuangjf@163.com

    • 中圖分類號: TG115.5

    Low-cycle fatigue behavior of 4Cr5MoSiV1 hot-work die steel at 700 ℃

    More Information
    • 摘要: 采用軸向應變幅控制的低周疲勞試驗研究了總應變幅對4Cr5MoSiV1熱作模具鋼700 ℃低周疲勞行為的影響,包括循環應力響應行為、循環應力應變行為、循環遲滯回線和應變疲勞壽命行為等。結果表明:隨著總應變幅從0.2%增大到0.6%,4Cr5MoSiV1鋼在700 ℃時循環應力響應均表現為先循環硬化再循環軟化的特性,并且應力幅最大值從220 MPa增大到308 MPa。同時,隨著總應變幅的增大,4Cr5MoSiV1鋼在700 ℃下的低周疲勞壽命由6750循環周次降低到210循環周次,且其過渡壽命約為1313循環周次。疲勞斷口形貌分析結果顯示,高溫低周疲勞過程中裂紋主要萌生于試樣表面處,且隨著應變幅增大,裂紋源逐漸增多,疲勞條紋間距變寬,其斷裂方式由韌性斷裂轉變為脆性斷裂。透射電鏡分析結果顯示,循環軟化可能與板條結構轉變為胞狀結構、基體發生位錯湮滅、碳化物的析出和粗化有關。

       

    • 圖  1  4Cr5MoSiV1鋼的微觀組織

      Figure  1.  Microstructure of 4Cr5MoSiV1 steel

      圖  2  高溫拉伸試樣圖

      Figure  2.  High-temperature tensile sample

      圖  3  低周疲勞試樣圖

      Figure  3.  Low-cycle fatigue test specimen

      圖  4  700 ℃靜態試驗結果。(a) 拉伸曲線;(b) 左圖中所選應變范圍的局部放大圖

      Figure  4.  Results of static tests: (a) tension diagrams; (b) magnification of the left diagram section and selection of deformation amplitude

      圖  5  4Cr5MoSiV1鋼700 ℃的循環應力響應

      Figure  5.  Cyclic stress response of 4Cr5MoSiV1 steel at 700 ℃

      圖  6  4Cr5MoSiV1鋼在700 ℃時的循環應力幅與塑性應變幅的關系曲線

      Figure  6.  Cyclic stress amplitude versus plastic strain amplitude of 4Cr5MoSiV1 steel at 700 ℃

      圖  7  4Cr5MoSiV1鋼在不同應變幅下半壽命時的遲滯回線

      Figure  7.  Hysteresis loops of 4Cr5MoSiV1 steel at half lifetime under various strain amplitudes

      圖  8  4Cr5MoSiV1鋼在700 ℃時的應變幅?載荷反向周次關系曲線

      Figure  8.  Strain amplitudes versus reversals to failure curves of 4Cr5MoSiV1 steel at 700 ℃

      圖  9  4Cr5MoSiV1鋼在不同應變幅下的源區形貌。(a) $ \Delta {\varepsilon }_{\mathrm{t}}/2=0.2 \% $;(b) $ \Delta {\varepsilon }_{\mathrm{t}}/2=0.3 \% $;(c) $ \Delta {\varepsilon }_{\mathrm{t}}/2=0.4 \% $;(d) $ \Delta {\varepsilon }_{\mathrm{t}}/2=0.6 \% $

      Figure  9.  Crack initiating source area morphology of 4Cr5MoSiV1 steel at different strain amplitudes: (a) $ \Delta {\varepsilon }_{\mathrm{t}}/2=0.2 \% $; (b) $ \Delta {\varepsilon }_{\mathrm{t}}/2=0.3 \% $; (c) $ \Delta {\varepsilon }_{\mathrm{t}}/2=0.4 \% $; (d) $ \Delta {\varepsilon }_{\mathrm{t}}/2=0.6 \% $

      圖  10  4Cr5MoSiV1鋼在不同應變幅下的擴展區形貌。(a) $ \Delta {\varepsilon }_{\mathrm{t}}/2=0.2 \% $;(b) $ \Delta {\varepsilon }_{\mathrm{t}}/2=0.3 \% $;(c) $ \Delta {\varepsilon }_{\mathrm{t}}/2=0.4 \% $;(d) $ \Delta {\varepsilon }_{\mathrm{t}}/2=0.6 \% $

      Figure  10.  Cracking propagation morphology of 4Cr5MoSiV1 steel at different strain amplitudes: (a) $ \Delta {\varepsilon }_{\mathrm{t}}/2=0.2 \% $; (b) $ \Delta {\varepsilon }_{\mathrm{t}}/2=0.3 \% $; (c) $ \Delta {\varepsilon }_{\mathrm{t}}/2=0.4 \% $; (d) $ \Delta {\varepsilon }_{\mathrm{t}}/2=0.6 \% $

      圖  11  4Cr5MoSiV1鋼在不同應變幅下的疲勞瞬斷區形貌。(a) $ \Delta {\varepsilon }_{\mathrm{t}}/2=0.2 \% $;(b) $ \Delta {\varepsilon }_{\mathrm{t}}/2=0.3 \% $;(c) $ \Delta {\varepsilon }_{\mathrm{t}}/2=0.4 \% $;(d) $ \Delta {\varepsilon }_{\mathrm{t}}/2=0.6 \% $

      Figure  11.  Final fracture morphology of 4Cr5MoSiV1 steel at different strain amplitudes: (a) $ \Delta {\varepsilon }_{\mathrm{t}}/2=0.2 \% $; (b) $ \Delta {\varepsilon }_{\mathrm{t}}/2=0.3 \% $; (c) $ \Delta {\varepsilon }_{\mathrm{t}}/2=0.4 \% $; (d) $ \Delta {\varepsilon }_{\mathrm{t}}/2=0.6 \% $

      圖  12  4Cr5MoSiV1鋼在700 ℃保溫不同時間的微觀組織。(a) 225 min;(b) 41 min

      Figure  12.  Microstructure of 4Cr5MoSiV1 steel at 700 ℃ at different time: (a) 225 min;(b) 41 min

      圖  13  4Cr5MoSiV1鋼在不同狀態下的微觀組織。(a) 700 ℃,225 min;(b) 700 ℃,41 min;(c) $ \Delta {\varepsilon }_{\mathrm{t}}/2=0.2 \% $, 700 ℃,225 min;(d) $ \Delta {\varepsilon }_{\mathrm{t}}/2=0.4 \% $, 700 ℃,41 min

      Figure  13.  Microstructure of 4Cr5MoSiV1 steel under different states: (a) 700 ℃,225 min; (b) 700 ℃, 41 min; (c) $ \Delta {\varepsilon }_{\mathrm{t}}/2=0.2 \% $, 700 ℃, 225 min; (d) $ \Delta {\varepsilon }_{\mathrm{t}}/2=0.4 \% $, 700 ℃, 41 min

      圖  14  4Cr5MoSiV1鋼在不同狀態下組織的透射電鏡照片. (a) 調質態;(b) $ \Delta {\varepsilon }_{\mathrm{t}}/2=0.2 \% $;(c) $ \Delta {\varepsilon }_{\mathrm{t}}/2=0.4 \% $

      Figure  14.  TEM micrographs of 4Cr5MoSiV1 steel under different states: (a) quenched and tempered state;(b) $ \Delta {\varepsilon }_{\mathrm{t}}/2=0.2 \% $;(c) $ \Delta {\varepsilon }_{\mathrm{t}}/2=0.4 \% $

      表  1  4Cr5MoSiV1鋼的化學成分(質量分數)

      Table  1.   Chemical compositions of 4Cr5MoSiV1 steel %

      CCrMoVSiMnFe
      0.405.001.101.001.000.30Balance
      下載: 導出CSV

      表  2  4Cr5MoSiV1鋼的700 ℃機械性能

      Table  2.   Mechanical properties of 4Cr5MoSiV1 steel at 700 °C

      Yield strength,σ0.2/MPaTensile strength,σm/MPaElongation,A/%Reduction of area,Z/%
      1873316091
      下載: 導出CSV

      表  3  4Cr5MoSiV1鋼的低周疲勞測試結果

      Table  3.   Low-cycle fatigue test results of 4Cr5MoSiV1 steel

      εt/2)/%εe/2)/%εp/2)/%${N}_{\mathrm{f}}$
      0.20.14250.05756750
      0.30.1640.1362399
      0.40.1710.229618
      0.60.1640.436210
      下載: 導出CSV
      中文字幕在线观看
    • [1] Unterweiser P M, Boyer H E, Kubbs J J, et al. Heat Treater's Guide, Standard Practices and Procedures for Steel. 4th Ed. Materials Park: American Society for Metals, 1982
      [2] Hawryluk M, Dolny A, Mroziński S. Low cycle fatigue studies of WCLV steel (1.2344) used for forging tools to work at higher temperatures. Arch Civil Mech Eng, 2018, 18(2): 465 doi: 10.1016/j.acme.2017.08.002
      [3] Persson A, Hogmark S, Bergstr?m J. Simulation and evaluation of thermal fatigue cracking of hot work tool steels. Int J Fatigue, 2004, 26(10): 1095 doi: 10.1016/j.ijfatigue.2004.03.005
      [4] Tsuhii N, Abe G, Fukaura K, et al. Effect of testing atmosphere on low cycle fatigue of hot work tool steel at elevated temperature. Tetsu-to-hagané, 1995, 81(6): 661 doi: 10.2355/tetsutohagane1955.81.6_661
      [5] Ma L, Luo Y X, Wang Y Q, et al. Visco-plastic constitutive model for cyclic responses simulation and lifetime prediction of hot-work tool steel H13 at elevated temperature. Steel Res Int, 2017, 88(11): 1700083 doi: 10.1002/srin.201700083
      [6] Wang Y Q, Du W Q, Luo Y X. A mean plastic strain fatigue–creep life prediction and reliability analysis of AISI H13 based on energy method. J Mater Res, 2017, 32(22): 4254 doi: 10.1557/jmr.2017.385
      [7] Zeng Y, Zuo P P, Wu X C, et al. Phenomenon on strain-induced precipitation and coarsening of carbides in H13 at 700 ℃. J Mater Res, 2016, 31(24): 3841 doi: 10.1557/jmr.2016.454
      [8] Zeng Y, Zuo P P, Wu X C, et al. Effects of mechanical strain amplitude on the isothermal fatigue behavior of H13. Int J Miner Metall Mater, 2017, 24(9): 1004 doi: 10.1007/s12613-017-1489-z
      [9] Wei W L, Feng Y R, Han L H, et al. Cyclic hardening and dynamic strain aging during low-cycle fatigue of Cr-Mo tempered martensitic steel at elevated temperatures. Mater Sci Eng A, 2018, 734: 20 doi: 10.1016/j.msea.2018.07.084
      [10] Fang Q Z, Hu Q W, Ren N S. Study on the high temperature tensile properties of steel alloy H13. Chin J Appl Mech, 2013, 30(4): 598 doi: 10.11776/cjam.30.04.B090

      方欽志, 胡勤偉, 任乃勝. H13鋼的高溫拉伸性能研究. 應用力學學報, 2013, 30(4):598 doi: 10.11776/cjam.30.04.B090
      [11] Wang Y L, Song K X, Zhang Y M, et al. Microstructure evolution and fracture mechanism of H13 steel during high temperature tensile deformation. Mater Sci Eng A, 2019, 746: 127 doi: 10.1016/j.msea.2019.01.027
      [12] Gao C H, Ren T L, Liu M. Low-cycle fatigue characteristics of Cr18Mn18N0.6 austenitic steel under strain controlled condition at 100 ℃. Int J Fatigue, 2019, 118: 35 doi: 10.1016/j.ijfatigue.2018.08.038
      [13] Chen L J, Wang Z G, Yao G, et al. The influence of temperature on low cycle fatigue behavior of nickel base superalloy GH4049. Int J Fatigue, 1999, 21(8): 791 doi: 10.1016/S0142-1123(99)00041-9
      [14] Salman S, F?nd?k F, Topuz P. Effects of various austempering temperatures on fatigue properties in ductile iron. Mater Des, 2007, 28(7): 2210 doi: 10.1016/j.matdes.2006.06.017
      [15] Samrout H, El Abdi R. Fatigue behaviour of 28CrMoV5-08 steel under thermomechanical loading. Int J Fatigue, 1998, 20(8): 555 doi: 10.1016/S0142-1123(97)00130-8
      [16] Kaae J L. High-temperature low-cycle fatigue of Alloy 800H. Int J Fatigue, 2009, 31(2): 332 doi: 10.1016/j.ijfatigue.2008.08.002
      [17] Verma P, Santhi Srinivas N C, Singh V. Low cycle fatigue behavior of modified 9Cr-1Mo steel at 300 ℃. Mater Sci Eng A, 2018, 715: 17 doi: 10.1016/j.msea.2017.12.105
      [18] Zuo P P, Wu X C, Zeng Y, et al. Strain-controlled thermal-mechanical fatigue behavior of 4Cr5Mo SiV1 hot work die steel. Chin J Eng, 2018, 40(1): 76

      左鵬鵬, 吳曉春, 曾艷, 等. 基于應變控制的4Cr5MoSiV1熱作模具鋼熱機械疲勞行為. 工程科學學報, 2018, 40(1):76
      [19] Yang F M, Sun X F, Guan H R, et al. On the low cycle fatigue deformation of K40S cobalt-base superalloy at elevated temperature. Mater Lett, 2003, 57(19): 2823 doi: 10.1016/S0167-577X(02)01382-4
      [20] Wu J H, Lin C K. Effect of strain rate on high-temperature low-cycle fatigue of 17-4 PH stainless steels. Mater Sci Eng A, 2005, 390(1-2): 291 doi: 10.1016/j.msea.2004.08.063
      [21] Ostergren W J. A damage function and associated failure equations for predicting hold time and frequency effects in elevated temperature, low cycle fatigue. J Test Eval, 1976, 4(5): 327 doi: 10.1520/JTE10520J
      [22] Mishnev R, Dudova N, Kaibyshev R. Low cycle fatigue behavior of a 10Cr-2W-Mo-3Co-NbV steel. Int J Fatigue, 2016, 83: 344 doi: 10.1016/j.ijfatigue.2015.11.008
      [23] Yu H C, Zhang S C, Li Y. Low cycle fatigue behaviors of structural steel 16Cr3NiWMoVNbE at different temperatures. Mater Mech Eng, 2014, 38(2): 44

      于慧臣, 張仕朝, 李影. 不同溫度下16Cr3NiWMoVNbE結構鋼的低周疲勞行為. 機械工程材料, 2014, 38(2):44
    • 加載中
    圖(14) / 表(3)
    計量
    • 文章訪問數:  3111
    • HTML全文瀏覽量:  1425
    • PDF下載量:  42
    • 被引次數: 0
    出版歷程
    • 收稿日期:  2019-06-10
    • 刊出日期:  2020-05-01

    目錄

      /

      返回文章
      返回