• 《工程索引》(EI)刊源期刊
    • 中文核心期刊
    • 中國科技論文統計源期刊
    • 中國科學引文數據庫來源期刊

    留言板

    尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

    姓名
    郵箱
    手機號碼
    標題
    留言內容
    驗證碼

    基于霍爾-埃魯特電解法制備鋁合金技術研究進展

    張城 薛濟來 劉軒 李想 朱駿 劉翹楚 錢義

    張城, 薛濟來, 劉軒, 李想, 朱駿, 劉翹楚, 錢義. 基于霍爾-埃魯特電解法制備鋁合金技術研究進展[J]. 工程科學學報, 2019, 41(7): 835-846. doi: 10.13374/j.issn2095-9389.2019.07.001
    引用本文: 張城, 薛濟來, 劉軒, 李想, 朱駿, 劉翹楚, 錢義. 基于霍爾-埃魯特電解法制備鋁合金技術研究進展[J]. 工程科學學報, 2019, 41(7): 835-846. doi: 10.13374/j.issn2095-9389.2019.07.001
    ZHANG Cheng, XUE Ji-lai, LIU Xuan, LI Xiang, ZHU Jun, LIU Qiao-chu, QIAN Yi. Production of aluminum alloys in electrolysis cells based on Hall-Héroult process: a review[J]. Chinese Journal of Engineering, 2019, 41(7): 835-846. doi: 10.13374/j.issn2095-9389.2019.07.001
    Citation: ZHANG Cheng, XUE Ji-lai, LIU Xuan, LI Xiang, ZHU Jun, LIU Qiao-chu, QIAN Yi. Production of aluminum alloys in electrolysis cells based on Hall-Héroult process: a review[J]. Chinese Journal of Engineering, 2019, 41(7): 835-846. doi: 10.13374/j.issn2095-9389.2019.07.001

    基于霍爾-埃魯特電解法制備鋁合金技術研究進展

    doi: 10.13374/j.issn2095-9389.2019.07.001
    基金項目: 

    國家自然科學基金資助項目 51434005

    國家自然科學基金資助項目 51704020

    國家自然科學基金資助項目 51874035

    詳細信息
      通訊作者:

      薛濟來, E-mail: jx@ustb.edu.cn

    • 中圖分類號: TF821

    Production of aluminum alloys in electrolysis cells based on Hall-Héroult process: a review

    More Information
    • 摘要: 現代霍爾-埃魯特(H-H)法鋁電解槽規模大、工藝成熟, 利用該法電解制備鋁基合金具有明顯技術和經濟優勢. 目前國內外研究主要是在現有氟化物熔鹽體系中添加多種合金元素氧化物, 合理調節電解質成分和工藝參數, 借助共電沉積和欠電位機制, 成功制備出多種鋁基合金, 工業化試驗亦有初步成果. 本文綜合分析了上述進展及發展前景, 并指出在實現合金組成精準調控、合金產品成分均勻化、電解槽高電流效率運行等方面存在的問題, 旨在為相關研究提供參考.

       

    • 圖  1  密度泛函理論計算結果.(a)Sc3+與F-絡合物結構的幾何特征;(b)KScF3和Al面的電子密度云圖[18]

      Figure  1.  Results of DFT calculation: (a) geometrical characterization of Sc3+ and F- complexes; (b) electron density cloud between KScF3 and aluminum surface[18]

      圖  2  熔鹽電解鋁合金界面電化學反應過程及電勢分布示意圖

      Figure  2.  Schematic of the potentials in the interfacial reaction process of molten salt electrolysis for aluminum alloys

      圖  3  部分合金元素氧化物以及冰晶石電解質成分的熱力學分解電壓數值與溫度的關系

      Figure  3.  Theoretical decomposition voltages of alloying metal oxides and cryolitic components with varying temperature

      圖  4  Al-Sc合金掃描電鏡圖.(a)Sc質量分數為0.75%;(b)Sc質量分數為0.94%[18]

      Figure  4.  SEM micrographs of Al-Sc alloys: (a) 0.75% Sc; (b) 0.94% Sc

      表  1  部分合金元素金屬氧化物在冰晶石基熔鹽體系中的溶解度

      Table  1.   Solubility of selected oxides of alloying metals in cryolitic melts

      合金元素氧化物 冰晶石基電解質組成(質量分數/%) 溫度/℃ 溶解度/% 參考文獻
      MgO 90NaF-NaCl 850 1.2 [22]
      NaCl-80Na3AlF6 850 1.9 [22]
      17.5NaCl-NaF-40Na3AlF6 850 2.1 [22]
      Nd2O3 LiF-NdF3-BaF2 800~900 7~10 [23]
      Sc2O3 7LiF-3Al2O3-Na3AlF6(CR=2.2) 900~980 3~5 [24]
      (3~9)ScF3-Na3AlF6(CR=2.1) 950~990 4.01~5.68 [25]
      (CR=2.4~2.8)Na3AlF6-3MgF2-3CaF2-(1.5~4.5)Al2O3 960~980 1.95~4.75 [26]
      CeO2 5Al2O3-Na3AlF6(CR=2.7) 1040 1.65 [27]
      Ce2O3 6Al2O3-Na3AlF6(CR=2.7) 1000 13.6 [27]
      La2O3 5Al2O3-Na3AlF6(CR=2.7) 1000 14.3 [27]
      TiO2 3.5Al2O3-Na3AlF6 1020 5.2 [28]
      SiO2 Na3AlF6 1010 5 [29]
      CuO (1~9)Al2O3-Na3AlF6 1020 0.13~0.75 [30]
      Cu2O (0.4~10)Al2O3-Na3AlF6 1020 0.2~0.28 [30]
      下載: 導出CSV

      表  2  Al-RE金屬間化合物標準吉布斯自由能、偏摩爾吉布斯自由能以及欠沉積電位實驗值

      Table  2.   Experimental values of standard Gibbs free energies, partial molar Gibbs free energies of RE, and underpotential of Al-RE IMC

      金屬間化合物 T/K ΔGf?/ (kJ·mol-1) $ \Delta {{\tilde G}_{{\rm{RE}}}}/\left( {{\rm{kJ}} \cdot {\rm{mo}}{{\rm{l}}^{ - 1}}} \right) $ ΔEUPD/V 參考文獻
      Al3Sc 723 -150.7 -150.7 0.521 [40]
      773 -145.1 -145.5 0.501
      Al2Sc 723 -133.3.5 -98.4 0.340 [40]
      773 -127.5 -92.4 0.319
      AlSc 723 -93.2 -52.9 0.183 [40]
      773 -84.1 -40.7 0.141
      AlSc2 723 -108.4 -15.3 0.053 [40]
      773 -105.0 -21.6 0.075
      PrAl11/3 693 -180.65 -180.65 0.624 [49]
      723 -179.92 -179.92 0.622
      773 -177.66 -177.66 0.614
      823 -174.86 -174.86 0.604
      Al3Ho 673 -157.6 -157.6 0.544 [50]
      723 -155.4 -155.4 0.537
      773 -152.8 -152.8 0.528
      下載: 導出CSV

      表  3  H-H法制備鋁基合金工業化實驗數據

      Table  3.   Industrial experimental data of Al-based alloys prepared by Hall-Héroult based process

      合金體系 電解質組成/% 溫度/℃ 電流強度/kA 槽電壓/V 合金元素質量分數/% 電流效率/% 參考文獻
      Al-Ce (1~3)Ce2CO3-Al2O3-Na3AlF6(CR= 2.35~2.45) 940~950 150 4.25~4.28 5.0~5.5 [56]
      Al-Mn Al2O3-Na3AlF6(CR=2.9)-MnO2 958 24 5.1 1.0~1.8 82.9 [79]
      Al2O3-Na3AlF6(CR=2.8~2.9)-MnO2 950 30 4.5~4.6 2.5~2.7 85 [80]
      Al-Ti Al2O3-Na3AlF6-(0.2~0.5)TiO2 945~955 42 4.48~4.63 0.17~0.52 72~88 [74]
      Al2O3-Na3AlF6-(0.23~0.25)TiO2 959~963 4.13 0.22~0.27 92~93 [10]
      Al-Si (2~2.5)Al2O3-Na3AlF6-(0.1~0.5)SiO2 960 200 4.03~4.08 <4.38 [77]
      Al-Si-Ti Al2O3-Na3AlF6-CaF2-MgF2-(0.87~ 1.47)SiO2-(0.075~0.15)TiO2 60 4.5 (4~10)Si- (0.39~0.91)Ti 73.86 [81]
      下載: 導出CSV
      中文字幕在线观看
    • [1] Grjotheim K. Aluminium Electrolysis: Fundamentals of the Hall-Héroult Process. 3rd Ed. Dusseldorf: Aluminum-Verlag, 2002
      [2] Qiu Z X. Prebaked Aluminium. Beijing: Metallurgical Industry Press, 2006

      邱竹賢. 預焙槽煉鋁. 北京: 冶金工業出版社, 2006
      [3] Liu Y X, Li J. Morden Alumuniun Electrolysis. Beijing: Metallurgical Industry Press, 2008

      劉業翔, 李劼. 現代鋁電解. 北京: 冶金工業出版社, 2008
      [4] Tang D X, Liu Y J, Zhang H J. The Rare Earth Metal Materials. Beijing: Metallurgical Industry Press, 2011

      唐定驤, 劉余九, 張洪杰. 稀土金屬材料. 北京: 冶金工業出版社, 2011
      [5] Wang X Y, Qiu S T, Zou Z S, et al. Study on steel deoxidation with Al-Ca compound alloy. Chin J Eng, 2017, 39(5): 702 doi: 10.13374/j.issn2095-9389.2017.05.008

      王曉英, 仇圣桃, 鄒宗樹, 等. Al-Ca復合合金鋼水脫氧機理的研究. 工程科學學報, 2017, 39(5): 702 doi: 10.13374/j.issn2095-9389.2017.05.008
      [6] Kojima Y. Project of platform science and technology for advanced magnesium alloys. Mater Trans, 2001, 42(7): 1154 doi: 10.2320/matertrans.42.1154
      [7] Park G H, Kim J T, Park H J, et al. Development of lightweight Mg-Li-Al alloys with high specific strength. J Alloys Compd, 2016, 680: 116 doi: 10.1016/j.jallcom.2016.04.109
      [8] Abu-Dheir N, Khraisheh M, Saito K, et al. Silicon morphology modification in the eutectic Al-Si alloy using mechanical mold vibration. Mater Sci Eng A, 2005, 393(1-2): 109 doi: 10.1016/j.msea.2004.09.038
      [9] Xiu Z Y, Chen G Q, Wang X F, et al. Microstructure and performance of Al-Si alloy with high Si content by high temperature diffusion treatment. Trans Nonferrous Met Soc China, 2010, 20(11): 2134 doi: 10.1016/S1003-6326(09)60430-1
      [10] Gao X Z, Liu T H, Li J K, et al. Study and practice of making aluminum and titanium alloy by aluminum electrolysis. Light Met, 2006(5): 48 doi: 10.3969/j.issn.1002-1752.2006.05.012

      高希柱, 劉同湖, 李景坤, 等. 電解生產鋁鈦合金研究與實踐. 輕金屬, 2006(5): 48 doi: 10.3969/j.issn.1002-1752.2006.05.012
      [11] Yang S, Yang G Q. Production of Aluminum Alloys by Electrolysis. Beijing: Metallurgical Industry Press, 2010

      楊昇, 楊冠群. 電解法生產鋁合金. 北京: 冶金工業出版社, 2010
      [12] Chen Y X. Research progress of preparation of rare earth metals by electrolysis in fluoride salt system. Chin Rare Earths, 2014, 35(2): 99 https://www.cnki.com.cn/Article/CJFDTOTAL-XTZZ201402024.htm

      陳宇昕. 氟化物體系電解稀土氧化物制備稀土金屬研究. 稀土, 2014, 35(2): 99 https://www.cnki.com.cn/Article/CJFDTOTAL-XTZZ201402024.htm
      [13] Feng N X. Aluminium Electrolysis. Beijing: Chemical Industry Press, 2008

      馮乃祥. 鋁電解. 北京: 化學工業出版社, 2008
      [14] Kan H M, Ban Y G, Qiu Z X, et al. Liquidus temperature, density and electrical conductivity of electrolyte for aluminum electrolysis. Chin J Process Eng, 2007, 7(3): 604 doi: 10.3321/j.issn:1009-606X.2007.03.034

      闞洪敏, 班允剛, 邱竹賢, 等. 鋁電解質體系初晶溫度、密度和電導率. 過程工程學報, 2007, 7(3): 604 doi: 10.3321/j.issn:1009-606X.2007.03.034
      [15] Liu D R, Yang Z H, Li W X, et al. Research on potassium cryolite for low temperature aluminium electrolysis. Light Met, 2009(10): 18 https://www.cnki.com.cn/Article/CJFDTOTAL-QJSS200910005.htm

      劉東任, 楊占紅, 李旺興, 等. 鉀冰晶石低溫電解質研究現狀. 輕金屬, 2009(10): 18 https://www.cnki.com.cn/Article/CJFDTOTAL-QJSS200910005.htm
      [16] Apisarov A, Dedyukhin A, Redkin A, et al. Physical-chemical properties of the KF-NaF-AlF3 molten system with low cryolite ratio//TMS 2009 Annual Meeting and Exhibition. San Francisco, 2009: 401 http://www.researchgate.net/publication/289830397_Physical-chemical_properties_of_the_KF-NAF-ALF3_molten_system_with_low_cryolite_ratio
      [17] Yang J, Graczyk D G, Wunsch C, et al. Alumina solubility in KF-AlF3-based low-temperature electrolyte system//TMS 2007 Annual Meeting and Exhibition. Orlando, 2007: 537 http://www.osti.gov/energycitations/product.biblio.jsp?osti_id=915006
      [18] Liu Q C. Preparation of Al-Sc Alloys by Electrolysis in KF-AlF3-Sc2O3 Melts System[Dissertation]. Beijing: University of Science and Technology Beijing, 2012

      劉翹楚. KF-AlF3-Sc2O3體系直接電解制備鋁鈧合金基礎研究[學位論文]. 北京: 北京科技大學, 2012
      [19] Liu Q S, Xue J L, Zhu J, et al. Effects of additives on the sodium penetration and expansion of carbon-based cathodes during aluminum electrolysis. J Univ Sci Technol Beijing, 2008, 30(4): 403 doi: 10.3321/j.issn:1001-053X.2008.04.015

      劉慶生, 薛濟來, 朱駿, 等. 添加劑對鋁電解炭基陰極鈉滲透膨脹過程的影響. 北京科技大學學報, 2008, 30(4): 403 doi: 10.3321/j.issn:1001-053X.2008.04.015
      [20] Tian Z L, Lai Y Q, Yin G, et al. Progress on low temperature aluminium electrolysis. Nonferrous Met (Extract Metall), 2004(5): 26 doi: 10.3969/j.issn.1007-7545.2004.05.009

      田忠良, 賴延清, 銀瑰, 等. 低溫鋁電解研究進展. 有色金屬(冶煉部分), 2004(5): 26 doi: 10.3969/j.issn.1007-7545.2004.05.009
      [21] Chen J S, Li D X. Molten salts properties and electrolyte compositions with same solubility of alumina at 20 ℃ above liquidus of aluminium electrolyte for Na3AlF6-AlF3-LiF-MgF2-CaF2 system. Light Met, 2009(1): 22 https://www.cnki.com.cn/Article/CJFDTOTAL-QJSS200901007.htm

      陳建設, 李德祥. 鋁電解質Na3AlF6-AlF3-LiF-MgF2-CaF2系初晶溫度上20 ℃的熔鹽性質和等溶成分. 輕金屬, 2009(1): 22 https://www.cnki.com.cn/Article/CJFDTOTAL-QJSS200901007.htm
      [22] Xu H, Liu W P, Dong R, et al. Study on solubility of MgO in melt salt. Nonferrous Met (Extract Metall), 2011(1): 20 doi: 10.3969/j.issn.1007-7545.2011.01.006

      徐徽, 劉衛平, 董瑞, 等. 氧化鎂在熔鹽中溶解度的研究. 有色金屬(冶煉部分), 2011(1): 20 doi: 10.3969/j.issn.1007-7545.2011.01.006
      [23] Wu W Y, Sun J Z, Hai L, et al. Solubility of Nd2O3 in fluoride molten salt. Chin Rare Earths, 1991, 12(3): 34 https://www.cnki.com.cn/Article/CJFDTOTAL-XTZZ199103007.htm

      吳文遠, 孫金治, 海力, 等. 氧化釹在氟鹽體系中的溶解度. 稀土, 1991, 12(3): 34 https://www.cnki.com.cn/Article/CJFDTOTAL-XTZZ199103007.htm
      [24] Guo R, Zhai X J, Zhang T A. Dissolution of Sc2O3 in nNaF·AlF3-LiF molten salt. J Mater Metall, 2008, 7(4): 264 doi: 10.3969/j.issn.1671-6620.2008.04.006

      郭瑞, 翟秀靜, 張廷安. 氧化鈧在冰晶石-氟化鋰體系中的溶解性能. 材料與冶金學報, 2008, 7(4): 264 doi: 10.3969/j.issn.1671-6620.2008.04.006
      [25] Lu G M, Liu X S. Dissolution of Sc2O3 in fluoride molten salt. Chin J Nonferrous Met, 1999, 9(3): 624 doi: 10.3321/j.issn:1004-0609.1999.03.035

      路貴民, 劉學山. 氧化鈧在nNaF·AlF3-ScF3熔鹽體系中的溶解. 中國有色金屬學報, 1999, 9(3): 624 doi: 10.3321/j.issn:1004-0609.1999.03.035
      [26] Yang S, Li Q, Gu S Q. Solubility of Sc2O3 in nNaF·AlF3-Al2O3 melts. Chin J Rare Met, 2003, 27(3): 418 doi: 10.3969/j.issn.0258-7076.2003.03.026

      楊昇, 李強, 顧松青. 氧化鈧在冰晶石-氧化鋁體系中的溶解性能研究. 稀有金屬, 2003, 27(3): 418 doi: 10.3969/j.issn.0258-7076.2003.03.026
      [27] Shen X Q, Shen S Y. The influence of valence and properties of rare earth metalls on its solubility in the cryolite-alumina molten salt. Chin Rare Earths, 1990(1): 59 https://www.cnki.com.cn/Article/CJFDTOTAL-XTZZ199001015.htm

      沈祥清, 沈時英. 稀土原料的價態與性質對它在冰晶石-氧化鋁系熔體中溶解度的影響. 稀土, 1990(1): 59 https://www.cnki.com.cn/Article/CJFDTOTAL-XTZZ199001015.htm
      [28] Jentoftsen T E, Lorentsen O A, Dewing E W, et al. Solubility of some transition metal oxides in cryolite-alumina melts: Part Ⅱ. Solubility of TiO2. Metall Mater Trans B, 2002, 33(6): 909 doi: 10.1007/s11663-002-0074-6
      [29] Weill D F. Stability relations in the Al2O3-SiO2 system calculated from solubilities in the Al2O3-Na3AlF6 system. Geochim Cosmochim Acta, 1966, 30(2): 223 doi: 10.1016/0016-7037(66)90109-8
      [30] Lorentsen O A, Jentoftsen T E, Dewing E W, et al. The solubility of some transition metal oxides in cryolite-alumina melts: Part Ⅲ. Solubility of CuO and Cu2O. Metall Mater Trans B, 2007, 38(5): 833 doi: 10.1007/s11663-007-9043-4
      [31] Lemaire G, Hebant P, Picard G S. DFT analysis of interfacial processes occurring in the first steps of electrodeposition of nickel from chloride melt. J Mol Struct, 1997, 419(1-3): 1 doi: 10.1016/S0166-1280(97)00250-9
      [32] Zhou Z Y, Wu B, Dou S S, et al. Thermodynamic properties of elements and compounds in Al-Sc binary system from Ab initio calculations based on density functional theory. Metall Mater Trans A, 2014, 45(4): 1720 doi: 10.1007/s11661-013-2117-9
      [33] Ar?kan N, Charifi Z, Baaziz H, et al. Electronic structure, phase stability, and vibrational properties of Ir-based intermetallic compound IrX (X=Al, Sc, and Ga). J Phys Chem Solids, 2015, 77: 126 doi: 10.1016/j.jpcs.2014.10.007
      [34] Baehr H D. Thermochemical properties of inorganic substances. Forsch Ingenieurwes, 1992, 58(4): 103 doi: 10.1007/BF02561491
      [35] Knacke O, Kubaschewski O, Hesselmann K. Thermochemical Properties of Inorganic Substances. Forschung im Ingenieurwesen, 1992, 58(4): 103 doi: 10.1007/BF02561491
      [36] Barin I, Platzki G. Thermochemical Data of Pure Substances. 3rd Ed. Weinheim: VCH Verlag, 1995
      [37] Adzic R, Yeager E, Cahan B D. Optical and electrochemical studies of underpotential deposition of lead on gold evaporated and single-crystal electrodes. J Electrochem Soc, 1974, 121(4): 474 doi: 10.1149/1.2401841
      [38] Kolb D M, Przasnyski M, Gerischer H. Underpotential deposition of metals and work function differences. J Electroanal Chem Interfacial Electrochem, 1974, 54(1): 25 doi: 10.1016/S0022-0728(74)80377-3
      [39] Castrillejo Y, Bermejo R, Martínez A M, et al. Application of electrochemical techniques in pyrochemical processes-Electrochemical behaviour of rare earths at W, Cd, Bi and Al electrodes. J Nucl Mater, 2007, 360(1): 32 doi: 10.1016/j.jnucmat.2006.08.011
      [40] Castrillejo Y, Vega A, Vega M, et al. Electrochemical formation of Sc-Al intermetallic compounds in the eutectic LiCl-KCl. Determination of thermodynamic properties. Electrochim Acta, 2014, 118: 58 doi: 10.1016/j.electacta.2013.11.163
      [41] Castrillejo Y, Fernández P, Bermejo M R, et al. Electrochemistry of thulium on inert electrodes and electrochemical formation of a Tm-Al alloy from molten chlorides. Electrochim Acta, 2009, 54(26): 6212 doi: 10.1016/j.electacta.2009.05.095
      [42] Castrillejo Y, Fernández P, Medina J, et al. Electrochemical extraction of samarium from molten chlorides in pyrochemical processes. Electrochim Acta, 2011, 56(24): 8638 doi: 10.1016/j.electacta.2011.07.059
      [43] Bermejo M R, Barrado E, Martinez A M, et al. Electrodeposition of Lu on W and Al electrodes: Electrochemical formation of Lu-Al alloys and oxoacidity reactions of Lu(Ⅲ) in the eutectic LiCl-KCl. J Electroanal Chem, 2008, 617(1): 85 doi: 10.1016/j.jelechem.2008.01.017
      [44] Bermejo M R, Gomez J, Medina J, et al. The electrochemistry of gadolinium in the eutectic LiCl-KCl on W and Al electrodes. J Electroanal Chem, 2006, 588(2): 253 doi: 10.1016/j.jelechem.2005.12.031
      [45] Kononov A, Polyakov E. High-temperature electrochemical synthesis and properties of intermetallic compounds of the Ni-Sc system. Part 1. Electrochemical behaviour of Sc(Ⅲ) in chloride-fluoride melts. J Alloys Compd, 1996, 239(2): 103 doi: 10.1016/0925-8388(96)02209-8
      [46] Liu Q C, Xue J L, Zhu J, et al. Preparing aluminium-scandium inter-alloys during reduction process in KF-AlF3-SC2O3 melts//TMS 2012 Annual Meeting and Exhibition. Orlando, 2012: 685
      [47] Nohira T, Kambara H, Amezawa K, et al. Electrochemical formation and phase control of Pr-Ni alloys in a molten LiCl-KCl-PrCl3 system. J Electrochem Soc, 2005, 152(4): C183 http://ci.nii.ac.jp/naid/10026708479
      [48] Ji D B, Yan Y D, Zhang M L, et al. Study on electrochemical behavior of La(Ⅲ) and preparation of Al-La intermetallic compound whiskers in chloride melt. J Electrochem Soc, 2016, 163(2): D1 doi: 10.1149/2.0101602jes
      [49] Castrillejo Y, Bermejo M R, Arocas P D, et al. The electrochemical behaviour of the Pr(Ⅲ)/Pr redox system at Bi and Cd liquid electrodes in molten eutectic LiCl-KCl. J Electroanal Chem, 2005, 579(2): 343 doi: 10.1016/j.jelechem.2005.03.001
      [50] Castrillejo Y, Bermejo M R, Barrado E, et al. Electrodeposition of Ho and electrochemical formation of Ho-Al alloys from the eutectic LiCl-KCl. J Electrochem Soc, 2006, 153(10): C713 http://www.researchgate.net/publication/239262095_Electrodeposition_of_Ho_and_Electrochemical_Formation_of_Ho-Al_Alloys_from_the_Eutectic_LiCl-KCl
      [51] Zhang Y X. Study on Preparation and Mechanism of Al-Sc and Mg-Li Based Alloys by Electrolysis in Molten Salt[Dissertation]. Harbin: Harbin Engineering University, 2011

      張艷霞. 鋁鈧與鎂鋰基合金的熔鹽電解制備及機理研究[學位論文]. 哈爾濱: 哈爾濱工程大學, 2011
      [52] Chen H H, Chen B X, Lin L J. Preparing Al-Ti-B-RE medium alloys by electrolysis. Jiangxi Nonferrous Met, 2001, 15(4): 15 doi: 10.3969/j.issn.1674-9669.2001.04.005

      陳輝煌, 陳本孝, 林立杰. 電解法制取鋁鈦硼中間合金. 江西有色金屬, 2001, 15(4): 15 doi: 10.3969/j.issn.1674-9669.2001.04.005
      [53] Gibilaro M, Massot L, Chamelot P, et al. Study of neodymium extraction in molten fluorides by electrochemical co-reduction with aluminium. J Nucl Mater, 2008, 382(1): 39 doi: 10.1016/j.jnucmat.2008.09.004
      [54] Yu X G, Qiu Z X. Preparation of Al-RE alloy by molten salt electrolysis. Chin Rare Earths, 2006, 27(6): 33 doi: 10.3969/j.issn.1004-0277.2006.06.008

      于旭光, 邱竹賢. 熔鹽電解制備稀土鋁合金的研究. 稀土, 2006, 27(6): 33 doi: 10.3969/j.issn.1004-0277.2006.06.008
      [55] Liao C F, Luo L S, Wang X, et al. Preparation for Al-Nd intermediate alloy by molten-salt electrolysis method and its mechanism. Chin J Nonferrous Met, 2015, 25(12): 3523 https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ201512031.htm

      廖春發, 羅林生, 王旭, 等. 熔鹽電解制備鋁釹中間合金及其機理. 中國有色金屬學報, 2015, 25(12): 3523 https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ201512031.htm
      [56] Zhan L. Practice of RE-Al alloys production with pre-baked Al reduction pot. Gansu Metall, 2012, 34(6): 32 doi: 10.3969/j.issn.1672-4461.2012.06.010

      詹磊. 150 kA預焙鋁電解槽生產稀土鋁中間合金生產實踐. 甘肅冶金, 2012, 34(6): 32 doi: 10.3969/j.issn.1672-4461.2012.06.010
      [57] Pang S M, Yan S H, Li Z A, et al. Development on molten salt electrolytic methods and technology for preparing rare earth metals and alloys in China. Chin J Rare Met, 2011, 35(3): 440 doi: 10.3969/j.issn.0258-7076.2011.03.022

      龐思明, 顏世宏, 李宗安, 等. 我國熔鹽電解法制備稀土金屬及其合金工藝技術進展. 稀有金屬, 2011, 35(3): 440 doi: 10.3969/j.issn.0258-7076.2011.03.022
      [58] Li G Y, Yang S H, Li J D, et al. Preparation of Al-Sc alloys by molten salt electrolysis. Light Met, 2007(5): 54 doi: 10.3969/j.issn.1002-1752.2007.05.015

      李廣宇, 楊少華, 李繼東, 等. 熔鹽電解法制備鋁鈧合金的研究. 輕金屬, 2007(5): 54 doi: 10.3969/j.issn.1002-1752.2007.05.015
      [59] Guo R, Cao W L, Zhai X J, et al. Preparation of Al-Sc application alloys by molten salt electrolysis method. Chin J Rare Met, 2008, 32(5): 645 doi: 10.3969/j.issn.0258-7076.2008.05.021

      郭瑞, 曹文亮, 翟秀靜, 等. 熔鹽電解法制備Al-Sc應用合金的工藝研究. 稀有金屬, 2008, 32(5): 645 doi: 10.3969/j.issn.0258-7076.2008.05.021
      [60] Teng G C, Zhai X J, Li J F, et al. Study on preparation of Al-Sc alloys by molten electrolysis. Non-Ferrous Min Metall, 2009, 25(1): 26 doi: 10.3969/j.issn.1007-967X.2009.01.008

      縢國春, 翟秀靜, 李俊福, 等. 鋁鈧合金的熔鹽電解法制備研究. 有色礦冶, 2009, 25(1): 26 doi: 10.3969/j.issn.1007-967X.2009.01.008
      [61] Liu Q C, Xue J L, Zhu J, et al. Processing Al-Sc alloys at liquid aluminum cathode in KF-AlF3 molten salt. ECS Trans, 2013, 50(11): 483 doi: 10.1149/05011.0483ecst
      [62] Yang S. The Research on Direct Electrolytic Al-Sc Alloys in Molten Salt[Dissertation]. Zhengzhou: Zhengzhou University, 2003

      楊昇. 電解法生產鋁鈧合金的研究[學位論文]. 鄭州: 鄭州大學, 2003
      [63] Qian Y. Fundamental Studies on Preparation of Al-Sc-Zr Alloys by Electrolysis in Molten Salts[Dissertation]. Beijing: University of Science and Technology Beijing, 2017

      錢義. 熔鹽電解法制備鋁鈧鋯合金的基礎研究[學位論文]. 北京: 北京科技大學, 2017
      [64] Qian Y, Xue J L, Liu Q C, et al. Preparing Al-Sc-Zr alloys in aluminum electrolysis process//TMS 2013 Annual Meeting and Exhibition. San Antonio, 2013: 1311
      [65] Jung J G, Lee S H, Lee J M, et al. Improved mechanical properties of near-eutectic Al-Si piston alloy through ultrasonic melt treatment. Mater Sci Eng A, 2016, 669: 187 doi: 10.1016/j.msea.2016.05.087
      [66] Puga H, Barbosa J, Costa S, et al. Influence of indirect ultrasonic vibration on the microstructure and mechanical behavior of Al-Si-Cu alloy. Mater Sci Eng A, 2013, 560: 589 doi: 10.1016/j.msea.2012.09.106
      [67] Feng H K, Yu S R, Li Y L, et al. Effect of ultrasonic treatment on microstructures of hypereutectic Al-Si alloy. J Mater Process Technol, 2008, 208(1-3): 330 doi: 10.1016/j.jmatprotec.2007.12.121
      [68] Qiu Z X, Zhang M J, Wang J, et al. Preparation of aluminum-magnesium master alloys by electrolysis of magnesium oxide in fluoride melts//TMS 1990 Annual Meeting and Exhibition. New Orleans, 1990: 349
      [69] Yang S H. Study on Preparation Al-Mg Alloy by Molten Salt Electrolysis Method from Magnesium Oxide[Dissertation]. Shenyang: Northeastern University, 2008

      楊少華. 以氧化鎂為原料熔鹽電解法制備Al-Mg合金的研究[學位論文]. 沈陽: 東北大學, 2008
      [70] Yang S H, Ban Y G, Guo Y H, et al. Preparation of aluminum-magnesium alloys from magnesium oxide. J Northeast Univ Nat Sci, 2007, 28(6): 839 doi: 10.3321/j.issn:1005-3026.2007.06.020

      楊少華, 班允剛, 郭玉華, 等. 以氧化鎂為原料生產鋁鎂合金的研究. 東北大學學報(自然科學版), 2007, 28(6): 839 doi: 10.3321/j.issn:1005-3026.2007.06.020
      [71] Yang S, Wu L, Yang F L, et al. Preparation of aluminum-magnesium alloy from magnesium oxide in RECl3-KCl-MgCl2 electrolyte by molten salts electrolysis method//TMS 2012 Annual Meeting and Exhibition. Orlando, 2012: 63
      [72] Qiu Z X, Yu Y X, Zhang M J. Prepare Al-Ti alloy in aluminium reduction cell. Light Met, 1986(4): 32 https://www.cnki.com.cn/Article/CJFDTOTAL-QJSS198604006.htm

      邱竹賢, 于亞鑫, 張明杰. 在鋁電解槽中生產Al-Ti合金. 輕金屬, 1986(4): 32 https://www.cnki.com.cn/Article/CJFDTOTAL-QJSS198604006.htm
      [73] Yu X G, Qiu Z X. Preparation of Al-Ti alloy by electrolysing TiO2 in aluminium bath. J Northeast Univ Nat Sci, 2004, 25(11): 1088 https://www.cnki.com.cn/Article/CJFDTOTAL-DBDX200411019.htm

      于旭光, 邱竹賢. TiO2電解制取Al-Ti合金. 東北大學學報(自然科學版), 2004, 25(11): 1088 https://www.cnki.com.cn/Article/CJFDTOTAL-DBDX200411019.htm
      [74] Wang M X, Liu Z Y, Song T F, et al. Test of producing low-Ti aluminum alloy by reduction and analysis of Ti distribution uniformity in the product. Light Met, 2003(4): 41 doi: 10.3969/j.issn.1002-1752.2003.04.013

      王明星, 劉智勇, 宋天福, 等. 電解生產低鈦鋁合金工業試驗及產品中鈦分布的均勻性分析. 輕金屬, 2003(4): 41 doi: 10.3969/j.issn.1002-1752.2003.04.013
      [75] Fan G X, Wang M X, Liu Z Y, et al. Grain refinement effects of titanium added to commercial pure aluminum by electrolysis and by master alloys. Chin J Nonferrous Met, 2004, 14(2): 250 doi: 10.3321/j.issn:1004-0609.2004.02.018

      范廣新, 王明星, 劉志勇, 等. 電解加鈦與熔配加鈦對工業純鋁晶粒細化的作用. 中國有色金屬學報, 2004, 14(2): 250 doi: 10.3321/j.issn:1004-0609.2004.02.018
      [76] Yu X G, Qiu Z X. Preparation of Al-Si alloy by molten salt electrolysis. J Northeast Univ Nat Sci, 2004, 25(5): 442 doi: 10.3321/j.issn:1005-3026.2004.05.010

      于旭光, 邱竹賢. 熔鹽電解法制取Al-Si合金. 東北大學學報(自然科學版), 2004, 25(5): 442 doi: 10.3321/j.issn:1005-3026.2004.05.010
      [77] Ma S L, Xu M, Lin Y S, et al. Research on Al-Si alloy produced from large aluminum reduction cell. Nonferrous Met (Extract Metall), 2011(5): 20 doi: 10.3969/j.issn.1007-7545.2011.05.005

      馬紹良, 許敏, 林玉勝, 等. 大型鋁電解槽直接生產鋁硅合金的研究. 有色金屬(冶煉部分), 2011(5): 20 doi: 10.3969/j.issn.1007-7545.2011.05.005
      [78] Yang G Q, Yang S, Yang Q F, et al. A review on production of Al-Si-Ti alloy by electrolysis. Foundry, 1999(4): 51 doi: 10.3321/j.issn:1001-2249.1999.04.018

      楊冠群, 楊升, 楊巧芳, 等. 電解法生產鋁硅鈦多元合金述評. 鑄造, 1999(4): 51 doi: 10.3321/j.issn:1001-2249.1999.04.018
      [79] Zhou R M, Zhang Z M, Wang J N, et al. Direct production of the aluminum-manganese alloy with the addition of the black manganese in industrial aluminum electrolytic cells. J Tangshan Inst Eng Technol, 1988(2): 33 https://www.cnki.com.cn/Article/CJFDTOTAL-HBLG198802003.htm

      周瑞銘, 張自銘, 王家乃, 等. 在工業鋁電解槽中添加氧化錳直接生產鋁-錳合金. 唐山工程技術學院學報, 1988(2): 33 https://www.cnki.com.cn/Article/CJFDTOTAL-HBLG198802003.htm
      [80] Yin Y J, Chen F H, Wen C Z. Industrial test of preparing Al-Mn alloy by electrolysis. Jiangxi Metall, 1988, 9(3): 43 https://www.cnki.com.cn/Article/CJFDTOTAL-JXYE198803019.htm

      尹英健, 陳芳華, 溫承志. 電解法制取鋁錳合金工業試驗研究. 江西冶金, 1988, 9(3): 43 https://www.cnki.com.cn/Article/CJFDTOTAL-JXYE198803019.htm
      [81] Huang Y K, Xiao H Z, Peng D Q. Industrial test of preparing Al-Si-Ti alloy by electrolysis. Trans Nonferrous Met Soc China, 1995, 5(2): 75 https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ502.018.htm

      黃英科, 肖輝照, 彭德泉. 電解法直接制取Al-Si-Ti合金工業試驗. 中國有色金屬學報, 1995, 5(2): 75 https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ502.018.htm
      [82] Liao C F, Luo L S, Wang X. Preparation of Al-Cu intermediate alloy by molten-salt electrolytic. Nonferrous Met Sci Eng, 2015, 6(3): 1 https://cdmd.cnki.com.cn/Article/CDMD-10407-1016244374.htm

      廖春發, 羅林生, 王旭. 熔鹽電解法制備Al-Cu中間合金. 有色金屬科學與工程, 2015, 6(3): 1 https://cdmd.cnki.com.cn/Article/CDMD-10407-1016244374.htm
      [83] Tang H. Study on Preparation of Al-Cu-Y Intermediate Alloy and Electrochemical Mechanism by Molten Salt Electrolysis[Dissertation]. Ganzhou: Jiangxi University of Science and Technology, 2016

      湯浩. 熔鹽電解法制備Al-Cu-Y中間合金及電化學機理研究[學位論文]. 贛州: 江西理工大學, 2016
      [84] Luo L S. Research on Mechanism and Preparation of Al-Cu-Nd Alloy by Molten Salt Electrolysis[Dissertation]. Ganzhou: Jiangxi University of Science and Technology, 2015

      羅林生. 熔鹽電解法制備Al-Cu-Nd三元合金及機理研究[學位論文]. 贛州: 江西理工大學, 2015
    • 加載中
    圖(4) / 表(3)
    計量
    • 文章訪問數:  1718
    • HTML全文瀏覽量:  724
    • PDF下載量:  58
    • 被引次數: 0
    出版歷程
    • 收稿日期:  2018-06-28
    • 刊出日期:  2019-07-01

    目錄

      /

      返回文章
      返回