• 《工程索引》(EI)刊源期刊
    • 中文核心期刊
    • 中國科技論文統計源期刊
    • 中國科學引文數據庫來源期刊

    留言板

    尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

    姓名
    郵箱
    手機號碼
    標題
    留言內容
    驗證碼

    結晶器旋轉數值模擬及對高速鋼電渣錠碳化物的影響

    鄧南陽 施曉芳 陳佳順 常凱華 于雯春 王建軍 常立忠

    鄧南陽, 施曉芳, 陳佳順, 常凱華, 于雯春, 王建軍, 常立忠. 結晶器旋轉數值模擬及對高速鋼電渣錠碳化物的影響[J]. 工程科學學報, 2020, 42(4): 516-526. doi: 10.13374/j.issn2095-9389.2019.07.07.001
    引用本文: 鄧南陽, 施曉芳, 陳佳順, 常凱華, 于雯春, 王建軍, 常立忠. 結晶器旋轉數值模擬及對高速鋼電渣錠碳化物的影響[J]. 工程科學學報, 2020, 42(4): 516-526. doi: 10.13374/j.issn2095-9389.2019.07.07.001
    DENG Nan-yang, SHI Xiao-fang, CHEN Jia-shun, CHANG Kai-hua, YU Wen-chun, WANG Jian-jun, CHANG Li-zhong. Numerical simulation of mold rotation and its effect on carbides in HSS ESR ingot[J]. Chinese Journal of Engineering, 2020, 42(4): 516-526. doi: 10.13374/j.issn2095-9389.2019.07.07.001
    Citation: DENG Nan-yang, SHI Xiao-fang, CHEN Jia-shun, CHANG Kai-hua, YU Wen-chun, WANG Jian-jun, CHANG Li-zhong. Numerical simulation of mold rotation and its effect on carbides in HSS ESR ingot[J]. Chinese Journal of Engineering, 2020, 42(4): 516-526. doi: 10.13374/j.issn2095-9389.2019.07.07.001

    結晶器旋轉數值模擬及對高速鋼電渣錠碳化物的影響

    doi: 10.13374/j.issn2095-9389.2019.07.07.001
    基金項目: 國家自然科學基金資助項目(51574001,51774003);鋼鐵冶金新技術國家重點實驗室開放基金資助項目(KF19-05);安徽省高校優秀青年人才支持計劃資助項目(gxyqZD2017034);安徽工業大學創新訓練項目(201910360013)
    詳細信息
      通訊作者:

      E-mail:clz1997@163.com

    • 中圖分類號: TF744

    Numerical simulation of mold rotation and its effect on carbides in HSS ESR ingot

    More Information
    • 摘要: 為了改善M2高速鋼中的碳化物分布,通過數值模擬詳細分析了結晶器旋轉對M2高速鋼電渣重熔過程溫度場、金屬熔池形狀的影響,并進一步通過實驗室雙極串聯結晶器旋轉電渣爐研究了旋轉速率對M2高速鋼電渣重熔過程的影響。采用掃描電鏡觀察并分析了結晶器旋轉對電渣錠中碳化物形貌、分布的影響;采用小樣電解萃取實驗,分析了結晶器旋轉速率對碳化物組成的影響。結果發現,隨著結晶器旋轉速率的增加,渣池的高溫區從芯部向邊部遷移,溫度分布更加均勻;金屬熔池的深度變淺,兩相區的寬度收窄,從而導致局部凝固時間降低、二次枝晶間距減小。與此相對應,隨著結晶器旋轉速率的增加,M2電渣錠的渣皮更薄、更加均勻,結晶器對電渣錠的冷卻強度更大,碳化物網格開始破碎、變薄,碳化物由片狀改變為細小的棒狀。X射線衍射分析表明,不論結晶器是否旋轉,碳化物的類型始終不變,由M2C、MC和M6C組成,但是隨旋轉速率增加M2C含量增加,MC和M6C含量降低。碳化物組織得以改善的主要原因在于,結晶器旋轉導致金屬熔池深度降低、兩相區寬度收窄,改善了凝固條件,減輕了元素偏析。

       

    • 圖  1  不同轉速下渣池的焦耳熱分布

      Figure  1.  Joule heat distribution of slag pool with different mold-rotation speeds

      圖  2  渣池表面的流場和溫度場隨結晶器旋轉的變化

      Figure  2.  Variations of the flow and temperature fields on the slag pool surface with different mold-rotation speeds

      圖  3  渣?金界面處的流場和溫度場隨結晶器旋轉的變化

      Figure  3.  Variations of the flow and temperature fields on the slag/metal?pool interface with different mold-rotation speeds

      圖  4  不同結晶器轉速下電渣錠/渣池的縱向溫度場分布

      Figure  4.  Longitudinal temperature distribution of the ESR ingot and slag pool with different mold-rotation speeds

      圖  5  不同轉速下液相線與固相線的位置. (a) 液相線; (b) 固相線

      Figure  5.  Locations of liquidus and solidus phases with different mold-rotation speeds: (a) liquidus temperature; (b) solidus temperature

      圖  6  試樣切取示意圖(單位:mm)

      Figure  6.  Schematic of sample cutting (unit: mm)

      圖  7  結晶器旋轉速度與渣皮厚度關系

      Figure  7.  Relationship between mold-rotation speed and slag-skin thickness

      圖  8  渣皮形成過程

      Figure  8.  Formation of slag skin during the ESR process

      圖  9  不同結晶器轉速對網狀碳化物的影響

      Figure  9.  Effect of different mold-rotation speeds on the carbide network

      圖  10  不同結晶器轉速下碳化物的三維形貌

      Figure  10.  Three-dimensional morphology of the carbides under different mold-rotation speeds

      圖  11  結晶器轉速為0與9 r·min?1時高速鋼萃取碳化物粉末的X射線衍射圖

      Figure  11.  XRD pattern of carbide powder obtained from high-speed steel at the mold-rotation speed 0 and 9 r·min?1

      圖  12  結晶器轉速對碳化物組成的影響

      Figure  12.  Effect of mold-rotation speed on carbide composition

      圖  13  電渣重熔過程金屬熔池的界面形狀

      Figure  13.  Interface shape of metal pool during ESR

      圖  14  碳化物生長示意圖. (a)$\omega $=0;(b)$\omega $>0

      Figure  14.  Schematic of carbide growth: (a) $\omega $=0; (b) $\omega $>0

      表  1  計算所需相關參數

      Table  1.   Relevant parameters required for calculation

      ParametersValue
      Thickness of slag pool/mm40
      Electrode diameter/mm28
      Electrode gap/mm20
      Electrode insertion depth/mm15
      Mold diameter/mm96
      Voltage/V34
      Mold-rotation speed / (r·min?1)0, 6, 13, 19
      下載: 導出CSV
      中文字幕在线观看
    • [1] Luan Y K, Song N N, Bai Y L, et al. Effect of solidification rate on the morphology and distribution of eutectic carbides in centrifugal casting high-speed steel rolls. J Mater Process Technol, 2010, 210(3): 536 doi: 10.1016/j.jmatprotec.2009.10.017
      [2] Ji Y L, Zhang W, Chen X Y, et al. Increasing solidification rate of M2 high-speed steel ingot by fusible metal mold. Acta Metall Sin (English Lett), 2016, 29(4): 382 doi: 10.1007/s40195-016-0398-x
      [3] Li Z B. Electroslag Metallurgy Theory and Practice. Beijing: Metallurgical Industry Press, 2010

      李正邦. 電渣冶金的理論與實踐. 北京: 冶金工業出版社, 2010
      [4] He B, Li J, Shi C B, et al. Effect of cooling intensity on carbides in Mg-containing H13 steel during the electroslag remelting process. Chin J Eng, 2016, 38(12): 1720

      賀寶, 李晶, 史成斌, 等. 電渣重熔過程冷卻強度對含鎂H13鋼中碳化物的影響. 工程科學學報, 2016, 38(12):1720
      [5] Hellman P. High-speed steels by powder metallurgy. Scand J Metall, 1998, 27(1): 44
      [6] Zhong H L, Fang Y, Kuang C, et al. Development of powder metallurgy high speed steel. Maters Sci Forum, 2010, 638-642: 1854 doi: 10.4028/www.scientific.net/MSF.638-642.1854
      [7] Li J, Li J, Shi C B, et al. Effect of trace magnesium on carbide improvement in H13 steel. Can Metall Q, 2016, 55(3): 321 doi: 10.1179/1879139515Y.0000000030
      [8] Zhou X F, Fang F, Tu Y Y, et al. Carbide refinement in M42 high speed steel by rare earth metals and spheroidizing treatment. J Southeast Univ English Ed, 2014, 30(4): 445
      [9] Wang M J, Chen L, Wang Z X, et al. Influence of rare earth elements on solidification behavior of a high speed steel for roll using differential scanning calorimetry. J Rare Earths, 2011, 29(11): 1089 doi: 10.1016/S1002-0721(10)60604-7
      [10] Chang L Z, Shi X F, Cong J Q, et al. Effects of relative motion between consumable electrodes and mould on solidification structure of electroslag ingots during electroslag remelting process. Ironmaking Steelmaking, 2014, 41(8): 611 doi: 10.1179/1743281213Y.0000000177
      [11] Chang L Z, Shi X F, Wang R X, et al. Effect of mold rotation on inclusion distribution in bearing steel during electroslag remelting process. China Foundry, 2014, 11(5): 452
      [12] Ge B L. Numerical Simulation of Slag Composition Change Influence on ESR Process[Dissertation]. Xi'an: Xi'an University of Architecture and Technology, 2016

      葛蓓蕾. 電渣重熔過程中渣成分變化對電渣冶金過程影響的數值模擬[學位論文]. 西安: 西安建筑科技大學, 2016
      [13] Li B K, Wang Q. Theory and Technology of Electroslag Remelting Based on Numerical Simulation. Beijing: Science Press, 2016

      李寶寬, 王強. 基于數值模擬的電渣重熔理論與技術. 北京: 科學出版社, 2016
      [14] Wang F, Li B K. Electromagnetic field and Joule heating of an electroslag remelting process with two series-connected electrodes. J Northeast Univ Nat Sci, 2011, 32(4): 533

      王芳, 李寶寬. 雙級串聯電渣重熔系統電磁場和焦耳熱場研究. 東北大學學報(自然科學版), 2011, 32(4):533
      [15] Zhou X F, Liu D, Zhu W L, et al. Morphology, microstructure and decomposition behavior of M2C carbides in high speed steel. J Iron Steel Res Int, 2017, 24(1): 43 doi: 10.1016/S1006-706X(17)30007-9
      [16] Zhou X F, Fang F, Jiang J Q, et al. Refining carbide dimensions in AISI M2 high speed steel by increasing solidification rates and spheroidising heat treatment. Mater Sci Technol, 2014, 30(1): 116 doi: 10.1179/1743284713Y.0000000338
      [17] Feng W W. The Carbide Characteristics of M2 High Speed Steel Containing Nitrogen and Rare Earth[Dissertation]. Qinhuangdao: Yanshan University, 2013

      馮唯偉. 含氮與稀土M2高速鋼碳化物特性研究[學位論文]. 秦皇島: 燕山大學, 2013
      [18] Chang L Z, Li Z B. Method of controlling solidification quality in electroslag remelting process. Steelmaking, 2007, 23(4): 56 doi: 10.3969/j.issn.1002-1043.2007.04.015

      常立忠, 李正邦. 電渣重熔過程中金屬凝固的控制方法. 煉鋼, 2007, 23(4):56 doi: 10.3969/j.issn.1002-1043.2007.04.015
      [19] Flemings M C. Solidification processing. Translated by Guan Y L, Tu B H, Xu C X. Beijing: Metallurgical Industry Press, 1981

      弗萊明斯 M C. 凝固過程. 關玉龍, 屠寶洪, 許誠信, 譯. 北京: 冶金工業出版社, 1981
      [20] Wang Q M, Cheng G G, Huang Y. Morphology and precipitation mechanism of large carbides in M2 high speed steel. Iron Steel, 2018, 53(1): 65

      王啟明, 成國光, 黃宇. M2高速鋼大尺寸碳化物的形貌特征及析出機理. 鋼鐵, 2018, 53(1):65
      [21] Deng Y R, Chen J R, Wang S Z. High Speed Tool Steel. Beijing: Metallurgical Industry Press, 2002

      鄧玉昆, 陳景榕, 王世章. 高速工具鋼. 北京: 冶金工業出版社, 2002
    • 加載中
    圖(14) / 表(1)
    計量
    • 文章訪問數:  1684
    • HTML全文瀏覽量:  1285
    • PDF下載量:  44
    • 被引次數: 0
    出版歷程
    • 收稿日期:  2019-07-07
    • 刊出日期:  2020-04-01

    目錄

      /

      返回文章
      返回