• 《工程索引》(EI)刊源期刊
    • 中文核心期刊
    • 中國科技論文統計源期刊
    • 中國科學引文數據庫來源期刊

    留言板

    尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

    姓名
    郵箱
    手機號碼
    標題
    留言內容
    驗證碼

    特殊鋼鋼渣用作橡膠功能填料及其安全性分析

    張浩 李海麗 高青 陳成

    張浩, 李海麗, 高青, 陳成. 特殊鋼鋼渣用作橡膠功能填料及其安全性分析[J]. 工程科學學報, 2020, 42(5): 628-634. doi: 10.13374/j.issn2095-9389.2019.07.09.001
    引用本文: 張浩, 李海麗, 高青, 陳成. 特殊鋼鋼渣用作橡膠功能填料及其安全性分析[J]. 工程科學學報, 2020, 42(5): 628-634. doi: 10.13374/j.issn2095-9389.2019.07.09.001
    ZHANG Hao, LI Hai-li, GAO Qing, CHEN Cheng. Safety analysis of specialty-steel slag used as rubber functional filler[J]. Chinese Journal of Engineering, 2020, 42(5): 628-634. doi: 10.13374/j.issn2095-9389.2019.07.09.001
    Citation: ZHANG Hao, LI Hai-li, GAO Qing, CHEN Cheng. Safety analysis of specialty-steel slag used as rubber functional filler[J]. Chinese Journal of Engineering, 2020, 42(5): 628-634. doi: 10.13374/j.issn2095-9389.2019.07.09.001

    特殊鋼鋼渣用作橡膠功能填料及其安全性分析

    doi: 10.13374/j.issn2095-9389.2019.07.09.001
    基金項目: 中國博士后科學基金資助項目(2017M612051);高校優秀青年骨干人才國外訪學研修資助項目(gxgwfx2018021);安徽省博士后研究人員科研活動經費資助項目(2017B168);冶金減排與資源綜合利用教育部重點實驗室(安徽工業大學)資助項目(KF17-08);安徽省級大學生創新創業訓練計劃資助項目(201810360266,S201910360240)
    詳細信息
      通訊作者:

      E-mail:fengxu19821018@163.com

    • 中圖分類號: TB332

    Safety analysis of specialty-steel slag used as rubber functional filler

    More Information
    • 摘要: 以特殊鋼鋼渣、炭黑、促進劑、硫磺、氧化鋅、硬脂酸與復合橡膠制備特殊鋼鋼渣基復合橡膠。測試了內輻射指數、外輻射指數、安定性、拉伸強度、撕裂強度、拉斷伸長率、邵爾A硬度、極限氧指數、燃盡時間、浸出液中重金屬濃度、礦物組成、粒徑分布、導熱系數、孔結構、化學成分、微觀形貌和熱穩定性。研究了特殊鋼鋼渣作為橡膠功能填料的可行性與環境風險。結果表明:特殊鋼鋼渣的礦物組成為Ca2SiO4、Ca3Al6Si2O16、(Fe, Mn)2SiO4、Ca3Al2(SiO43、Na2TiSiO5、CuMn6SiO12、Na2SiO5、Pb3Ta2O8、Pb3SiO7等金屬固熔體,特殊鋼鋼渣具有良好的粒徑分布,其安全性與安定性滿足相關國標的要求。特殊鋼鋼渣基復合橡膠中特殊鋼鋼渣摻量為20%~40%時,特殊鋼鋼渣基復合橡膠的拉伸強度為20.0~21.5 MPa、撕裂強度為45.2~48.6 kN·m?1、拉斷伸長率為475%~501%、邵爾A硬度為63.5~65.3、極限氧指數為18.5~18.6、燃盡時間為264~292 s、導熱系數為0.15~0.17 W·m?1·K?1。特殊鋼鋼渣的主要重金屬氧化物為Cr2O3、PbO和CuO,且以穩定的金屬固熔體存在,特殊鋼鋼渣基復合橡膠中Cu、Zn、Cd、Pb、Cr、Ba、Ni、As等重金屬浸出濃度遠低于危險廢物鑒別標準限值,因此將特殊鋼鋼渣作為橡膠功能填料安全、可行。

       

    • 圖  1  特殊鋼鋼渣的礦物組成

      Figure  1.  Mineral composition of specialty-steel slag

      圖  2  特殊鋼鋼渣的粒度分布

      Figure  2.  Particle size distribution of specialty-steel slag

      圖  3  特殊鋼鋼渣基復合橡膠的掃描電鏡圖。(a) 1#;(b) 2#;(c) 3#;(d) 4#;(e) 5#;(f) 6#

      Figure  3.  SEM images of specialty-steel slag-based rubber composites: (a) 1#; (b) 2#; (c) 3#; (d) 4#; (e) 5#; (f) 6#

      圖  4  特殊鋼鋼渣基復合橡膠的X射線衍射圖。(a) 6#;(b) 3#;(c) 5#

      Figure  4.  XRD plots of specialty-steel slag-based rubber composites: (a) 6#; (b) 3#; (c) 5#

      圖  5  特殊鋼鋼渣基復合橡膠的熱重分析曲線

      Figure  5.  TGA plot of specialty-steel slag-based rubber composites

      表  1  特殊鋼鋼渣的基本性能

      Table  1.   Basic properties of specialty-steel slag

      SafetyStabilityPore structure
      Internal exposure indexExternal exposure indexf-CaO mass fraction/%Boiling expansion/mmSpecific surface area/
      (m2·g?1)
      Pore volume/
      (mL·g?1)
      Average pore size/
      nm
      0.440.530.910.726.1110.043220.81
      下載: 導出CSV

      表  2  特殊鋼鋼渣基復合橡膠的主要性能指標

      Table  2.   Main performance parameters of specialty-steel slag-based rubber composites

      NO.Content of carbon black/gContent of specialty-steel slag/gMechanical propertiesFlame retardant propertiesHeat conductivity
      coefficient/
      (W·m?1·K?1)
      Tensile strength/
      MPa
      Tear strength/
      (kN·m?1)
      Elongation at break/%Shore A hardnessLimiting oxygen index/%Burnout time/
      s
      1#50022.850.745866.718.52410.20
      2#401021.548.647565.318.52640.17
      3#302020.045.250163.518.62920.15
      4#203015.939.553359.418.63050.19
      5#10409.531.355654.218.73160.24
      6#30016.238.952757.718.52260.18
      下載: 導出CSV

      表  3  特殊鋼鋼渣的化學成分(質量分數)

      Table  3.   Chemical composition of specialty-steel slag %

      CaOSiO2Al2O3MgOFe2O3Cr2O3PbOP2O5CuOMnOOther
      52.3523.688.317.561.961.120.830.410.370.323.09
      下載: 導出CSV

      表  4  特殊鋼鋼渣基復合橡膠的重金屬浸出毒性

      Table  4.   Leaching toxicities of heavy metals from specialty-steel slag-based rubber composites

      Heavy metalLimiting value/
      (mg·L?1)
      Test values/(mg·L?1)
      1#2#3#4#5#6#
      Cu10000.0050.0070.0140.0240
      Zn1000.0030.0060.0090.0160.0280.001
      Cd100.0010.0020.0040.0050
      Pb500.0030.0050.0090.0160
      Cr1500.0010.0020.0060.0060
      Ba10000.0230.0350.0840.1130
      Ni500.0040.0090.0170.0310
      As500.0010.0020.0060.0060
      下載: 導出CSV
      中文字幕在线观看
    • [1] Liu T C. The Highly Effective Technology to Active Steel Slag and Its Application in Green Construct Materials [Dissertation]. Changsha: Central South University, 2008

      劉天成. 鋼渣高效活化及在綠色建材中的應用[學位論文]. 長沙: 中南大學, 2008
      [2] Zhang Z H, Liao J L, Ju J T, et al. Treatment process and utilization technology of steel slag in China and Abroad. J Iron Steel Res, 2013, 25(7): 1

      張朝暉, 廖杰龍, 巨建濤, 等. 鋼渣處理工藝與國內外鋼渣利用技術. 鋼鐵研究學報, 2013, 25(7):1
      [3] Murri A N, Rickard W D A, Bignozzi M C, et al. High temperature behaviour of ambient cured alkali-activated materials based on ladle slag. Cem Concr Res, 2013, 43: 51 doi: 10.1016/j.cemconres.2012.09.011
      [4] Maertens C, Dubois P, Jerome R, et al. Synthesis and polarized light-induced birefringence of new polymethacrylates containing carbazolyl and azobenzene pendant groups. J Polym Sci Part B Polym Phys, 2000, 38(1): 205 doi: 10.1002/(SICI)1099-0488(20000101)38:1<205::AID-POLB23>3.0.CO;2-H
      [5] Mykhaylyk O O, Warren N J, Parnell A J, et al. Applications of shear-induced polarized light imaging (SIPLI) technique for mechano-optical rheology of polymers and soft matter materials. J Polym Sci Part B Polym Phys, 2016, 54(21): 2151 doi: 10.1002/polb.24111
      [6] Li Z F, Luo M Y, Jiang Y X, et al. Preparation and application of organo montmorillonite synthesizing exfoliated natural rubber composites. Polym Mater Sci Eng, 2017, 33(3): 1

      李再峰, 羅明艷, 蔣玉湘, 等. 用以合成高剝離型天然橡膠復合材料有機蒙脫土的制備及應用. 高分子材料科學與工程, 2017, 33(3):1
      [7] Liu X B, Gao Y, Bian L N, et al. Influence of ultrafine full-vulcanized styrene-butadiene powdered rubber on dynamic mechanical properties of natural rubber/butadiene rubber and styrene- butadiene rubber/butadiene rubber blends. Polym Bull, 2015, 72(8): 2001 doi: 10.1007/s00289-015-1385-5
      [8] Dmowska-Jasek P, Rzymski W M, Koscista E, et al. A new method of styrene-butadiene rubber curing using in situ generated Lewis acids. Polimery, 2015, 61(11-12): 742
      [9] Liu X B, Gao Y, Bian L N, et al. Preparation and characterization of natural rubber/ultrafine full-vulcanized powdered styrene-butadiene rubber blends. Polym Bull, 2014, 71(8): 2023 doi: 10.1007/s00289-014-1169-3
      [10] Yu P, He H, Jiang C, et al. Reinforcing styrene butadiene rubber with lignin-novolac epoxy resin networks. Express Polym Lett, 2015, 9(1): 36 doi: 10.3144/expresspolymlett.2015.5
      [11] Custodio J, Broughton J, Cruz H. A review of factors influencing the durability of structural bonded timber joints. Int J Adhes Adhes, 2009, 29(2): 173 doi: 10.1016/j.ijadhadh.2008.03.002
      [12] Ashori A, Nourbakhsh A, Karegarfard A. Properties of medium density fiberboard based on bagasse fibers. J Compos Mater, 2009, 43(18): 1927 doi: 10.1177/0021998309341099
      [13] He F, Li W P, You J H, et al. Effect of liquid natural rubber on interfacial interactions of SiO2/NR composites prepared by wet mixing method. Acta Mater Compos Sin, 2018, 35(1): 185

      何凡, 李文朋, 游建華, 等. 液體天然橡膠對濕法混煉制備白炭黑/天然橡膠復合材料界面相互作用的影響. 復合材料學報, 2018, 35(1):185
      [14] Wang N, Yu F, Wang S, et al. Caged pentaerythritol phosphate-expandable graphite synergistic flame retardant natural rubber. Acta Mater Compos Sin, 2018, 35(11): 2966

      王娜, 于芳, 王升, 等. 籠狀季戊四醇磷酸酯-可膨脹石墨協同阻燃天然橡膠. 復合材料學報, 2018, 35(11):2966
      [15] Zhang H, Zhang X Y. Preparation of modified porous steel slag/rubber composite materials and its properties. Chin J Eng, 2019, 41(1): 88

      張浩, 張欣雨. 改性多孔鋼渣/橡膠復合材料的制備及其性能. 工程科學學報, 2019, 41(1):88
      [16] Zhang H, Huang X J, Zong Z F, et al. Optimization of preparation program for biomass based porous active carbon by response surface methodology based on adsorptive property. J Mater Eng, 2017, 45(6): 67 doi: 10.11868/j.issn.1001-4381.2016.000979

      張浩, 黃新杰, 宗志芳, 等. 基于吸附性能的生物質基多孔活性炭制備方案的響應面法優化. 材料工程, 2017, 45(6):67 doi: 10.11868/j.issn.1001-4381.2016.000979
      [17] Shang J L, Zhang H, Xiong L, et al. Optimized preparation of decanoic-palmitic acid/SiO2 composite phase change materials based on uniform design. J Mater Eng, 2015, 43(9): 94 doi: 10.11868/j.issn.1001-4381.2015.09.015

      尚建麗, 張浩, 熊磊, 等. 基于均勻設計優化制備癸酸-棕櫚酸/SiO2復合相變材料. 材料工程, 2015, 43(9):94 doi: 10.11868/j.issn.1001-4381.2015.09.015
      [18] Chen H, Li H. Action mechanism of special steel tailing powder in preparation for foam concrete. J Build Mater, 2019, 22(3): 446 doi: 10.3969/j.issn.1007-9629.2019.03.017

      陳華, 李輝. 特殊鋼尾渣粉在泡沫混凝土制備中的作用機理. 建筑材料學報, 2019, 22(3):446 doi: 10.3969/j.issn.1007-9629.2019.03.017
      [19] Chen H, Li H, Dong S, et al. X-ray diffraction (XRD) and X-ray fluorescence (XRF) analysis of steel slags in different treatment process and active index prediction model. Spectrosc Spect Anal, 2017, 37(8): 2590

      陳華, 李輝, 董朔, 等. 不同處理工藝鋼渣的X射線衍射和X射線熒光光譜分析及其活性指數預測模型. 光譜學與光譜分析, 2017, 37(8):2590
      [20] Xu S, Wu W H, Cheng L Y, et al. Preparation of cattail activated carbon supported Fe2O3 and its flame retardant application in flexible polyvinyl chloride. Acta Mater Compos Sin, 2018, 35(7): 1745

      許碩, 武偉紅, 程路瑤, 等. 蒲絨活性炭負載Fe2O3的制備及其在軟質聚氯乙烯中的阻燃應用. 復合材料學報, 2018, 35(7):1745
    • 加載中
    圖(5) / 表(4)
    計量
    • 文章訪問數:  1438
    • HTML全文瀏覽量:  1015
    • PDF下載量:  23
    • 被引次數: 0
    出版歷程
    • 收稿日期:  2019-07-09
    • 刊出日期:  2020-05-01

    目錄

      /

      返回文章
      返回