• 《工程索引》(EI)刊源期刊
    • 中文核心期刊
    • 中國科技論文統計源期刊
    • 中國科學引文數據庫來源期刊

    留言板

    尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

    姓名
    郵箱
    手機號碼
    標題
    留言內容
    驗證碼

    不同粗骨料對膏體凝結性能的影響及配比優化

    尹升華 劉家明 陳威 鄒龍 寇永淵 李希雯

    尹升華, 劉家明, 陳威, 鄒龍, 寇永淵, 李希雯. 不同粗骨料對膏體凝結性能的影響及配比優化[J]. 工程科學學報, 2020, 42(7): 829-837. doi: 10.13374/j.issn2095-9389.2019.07.14.005
    引用本文: 尹升華, 劉家明, 陳威, 鄒龍, 寇永淵, 李希雯. 不同粗骨料對膏體凝結性能的影響及配比優化[J]. 工程科學學報, 2020, 42(7): 829-837. doi: 10.13374/j.issn2095-9389.2019.07.14.005
    YIN Sheng-hua, LIU Jia-ming, CHEN Wei, ZOU Long, KOU Yong-yuan, LI Xi-wen. Optimization of the effect and formulation of different coarse aggregates on performance of the paste backfill condensation[J]. Chinese Journal of Engineering, 2020, 42(7): 829-837. doi: 10.13374/j.issn2095-9389.2019.07.14.005
    Citation: YIN Sheng-hua, LIU Jia-ming, CHEN Wei, ZOU Long, KOU Yong-yuan, LI Xi-wen. Optimization of the effect and formulation of different coarse aggregates on performance of the paste backfill condensation[J]. Chinese Journal of Engineering, 2020, 42(7): 829-837. doi: 10.13374/j.issn2095-9389.2019.07.14.005

    不同粗骨料對膏體凝結性能的影響及配比優化

    doi: 10.13374/j.issn2095-9389.2019.07.14.005
    基金項目: 國家優秀青年科學基金資助項目(51722401);國家自然科學基金重點資助項目(51734001);中央高校基本科研業務費專項資金資助項目(FRF-TP-18-003C1);鎳鈷資源綜合利用國家重點實驗室基金資助項目(201902)
    詳細信息
      通訊作者:

      E-mail:1605920727@qq.com

    • 中圖分類號: TD862.2

    Optimization of the effect and formulation of different coarse aggregates on performance of the paste backfill condensation

    More Information
    • 摘要: 甘肅金川銅鎳礦似膏體充填料漿水化凝結時間遲緩、粗骨料離析程度大,嚴重影響充填漿體的質量。本文以金川二礦區全尾砂、廢石和棒磨砂為實驗材料,采用全面實驗設計法,研究不同質量分數、粗骨料及尾骨比(全尾砂與粗骨料質量比)對膏體充填凝結性能、抗壓強度和流變特性的影響規律。實驗結果表明:全尾砂–粗骨料膏體中,粗骨料的比表面積和化學成分(活性MgO和CaO)是影響凝結時間的主要因素;凝結時間隨尾骨比增加而縮短,屈服應力隨尾骨比增加而增加,塑性黏度(全尾砂–廢石、全尾砂–棒磨砂膏體)隨尾骨比增加而增加;全尾砂–廢石膏體抗壓強度優于全尾砂–廢石–棒磨砂膏體抗壓強度;最短凝結時間及最佳抗壓強度(全尾砂–廢石膏體、尾骨比5∶5)比礦用凝結時間和抗壓強度分別縮短2.1 h和增加33%以上。最后對凝結性能進行單目標及多目標回歸優化,多目標回歸優化表明:全尾砂–廢石–棒磨砂膏體最佳凝結時間為270~300 min、尾骨比10∶6∶6~10∶7∶7、屈服應力為167.0~169.0 Pa;全尾砂–棒磨砂膏體最佳凝結時間為300~330 min、尾骨比10∶14~10∶16、屈服應力為164.0~167.0 Pa,滿足礦山生產要求。

       

    • 圖  1  全尾砂粒徑分布

      Figure  1.  Particle size distribution of unclassified tailings

      圖  2  不同因素下料漿初凝時間。(a)質量分數;(b)尾骨比

      Figure  2.  Initial setting time of slurry with different factors: (a) mass fractions; (b) tailings-aggregate ratios

      圖  3  不同質量分數初凝時間和抗壓強度。(a)初凝時間;(b)抗壓強度

      Figure  3.  Initial setting time and compressive strength of different mass fractions: (a) initial setting time; (b) compressive strength

      圖  4  不同尾骨比屈服應力與塑性黏度。(a)屈服應力;(b)塑性黏度

      Figure  4.  Yield stress and plastic viscosity of different tailings-aggregate ratios: (a) yield stress; (b) plastic viscosity

      圖  5  凝結時間與3、7及28 d抗壓強度擬合曲線。(a)全尾砂–廢石;(b)全尾砂–廢石–棒磨砂;(c)全尾砂–棒磨砂

      Figure  5.  Fitting curve of setting time and compressive strength in 3 d, 7 d and 28 d: (a) unclassified tailings-waste rock; (b) unclassified tailings-waste rock-rod milling sand; (c) unclassified tailings-rod milling sand

      圖  6  屈服應力和塑性黏度與凝結時間擬合曲線。(a)全尾砂–廢石;(b)全尾砂–廢石–棒磨砂;(c)全尾砂–棒磨砂

      Figure  6.  Fitting curves of yield stress, plastic viscosity and setting time: (a) unclassified tailings-waste rock; (b) unclassified tailings-waste rock-rod milling sand; (c) unclassified tailings-rod milling sand

      表  1  物料化學成分(質量分數)

      Table  1.   Chemical constituents of materials %

      MaterialsSiO2CaOMgOAl2O3Fe2O3SO3K2OTiO2MnOLoss
      Unclassified tailings34.203.7332.715.0419.143.370.390.330.001.09
      Waste rock36.7116.3927.226.817.172.581.950.540.120.51
      Rod milling sand75.753.581.0510.952.351.452.500.330.002.04
      下載: 導出CSV

      表  2  礦物活性評價指標公式

      Table  2.   Formula of mineral activity evaluation index

      EvaluationAlkalinity rateActivity rateMass index
      Formula${M_0}{\rm{ = }}\dfrac{{m{\rm{(CaO)}} + m({\rm{MgO}})}}{{m({\rm{Si}}{{\rm{O}}_{\rm{2}}}) + m({\rm{A}}{{\rm{l}}_{\rm{2}}}{{\rm{O}}_{\rm{3}}})}}$${M_{\rm{a}}}{\rm{ = }}\dfrac{{m({\rm{A}}{{\rm{l}}_{\rm{2}}}{{\rm{O}}_{\rm{3}}})}}{{m({\rm{Si}}{{\rm{O}}_{\rm{2}}})}}$$K = \dfrac{{m({\rm{CaO}}) + m({\rm{A}}{{\rm{l}}_{\rm{2}}}{{\rm{O}}_{\rm{3}}}) + {\rm{MgO}}}}{{m({\rm{Si}}{{\rm{O}}_{\rm{2}}}) + m({\rm{Ti}}{{\rm{O}}_{\rm{2}}}) + m({\rm{MnO}})}}$
      ValueM0>1: alkaline slag
      M0=1: neutral slag
      M0<1: acid slag
      Ma>0.25: high activity
      0.15<Ma <0.25: moderate activity
      Ma<0.15: low activity
      K>1.9: high active slag
      1.2<K<1.9: moderate active slag
      K<1.2: low active slag
      下載: 導出CSV

      表  3  粗骨料粒徑組成(質量分數)

      Table  3.   Particle size distribution of coarse aggregate %

      Particle size content–0.3 mm+0.3 ~ –0.45 mm+0.45 ~ –2 mm+2 ~ –4.75 mm+4.75 ~ –10 mm+10 ~ –15 mm+15 mm
      Waste rock5.678.9210.3119.7338.606.1210.64
      Rod milling sand17.5616.3733.5316.4310.282.063.78
      River sand23.9327.7019.7719.677.830.930
      下載: 導出CSV

      表  4  膏體凝結性能試驗設計方案

      Table  4.   Test design of condensation performance of paste backfill

      PhasesProportioningRaw materialsMass fraction / %
      Phase 15∶2.5∶2.5River sand–waste rock–rod milling sand75
      5∶2.5∶2.5River sand–waste rock–rod milling sand76
      5∶2.5∶2.5River sand–waste rock–rod milling sand77
      5∶2.5∶2.5River sand–waste rock–rod milling sand78
      5∶2.5∶2.5River sand–waste rock–rod milling sand79
      5∶2.5∶2.5River sand–waste rock–rod milling sand80
      Phase 26∶4Unclassified tailings–waste rock77
      5∶5Unclassified tailings–waste rock77
      4∶6Unclassified tailings–waste rock77
      6∶4Unclassified tailings–rod milling sand77
      5∶5Unclassified tailings–rod milling sand77
      4∶6Unclassified tailings–rod milling sand77
      6∶2∶2Unclassified tailings–waste rock–rod milling sand77
      5∶2.2∶2.5Unclassified tailings–waste rock–rod milling sand77
      4∶3∶3Unclassified tailings–waste rock–rod milling sand77
      下載: 導出CSV
      中文字幕在线观看
    • [1] Cui L, Fall M. An evolutive elasto-plastic model for cemented paste backfill. Comput Geotech, 2016, 71: 19 doi: 10.1016/j.compgeo.2015.08.013
      [2] Yang Z Q, Wang Y Q, Gao Q, et al. Key technologies for comprehensive utilization of solid waste from filling mining in jinchuan mine. Resour Environ Eng, 2014, 28(5): 706 doi: 10.3969/j.issn.1671-1211.2014.05.024

      楊志強, 王永前, 高謙, 等. 金川礦山充填采礦固體廢棄物綜合利用關鍵技術. 資源環境與工程, 2014, 28(5):706 doi: 10.3969/j.issn.1671-1211.2014.05.024
      [3] Luo T, Wang Q, Zhuang S Y, et al. Effects of ultra-fine ground granulated blast-furnace slag on initial setting time, fluidity and rheological properties of cement pastes. Powder Tech, 2019, 345: 54 doi: 10.1016/j.powtec.2018.12.094
      [4] Wang H J, Li H, Wu A X, et al. Effects of germanium waste residue content on hydration and setting of cement and paste. J Cent South Univ Sci Technol, 2013(2): 743

      王洪江, 李輝, 吳愛祥, 等. 鍺廢渣摻量對水泥及膏體水化凝結的影響規律. 中南大學學報: 自然科學版, 2013(2):743
      [5] Deng S F. Effects of steel slag powder on the setting time and strength of concrete. Fujian building mater, 2018, 203(3): 17

      鄧樹峰. 鋼渣粉對混凝土凝結時間和強度的影響研究. 福建建材, 2018, 203(3):17
      [6] Wang F Z, Wang H J, Li G C, et al. Study on the effect of aggregate size on paste setting property. Min Res Dev, 2018, 38(11): 35

      王方正, 王洪江, 李公成, 等. 骨料粒級對膏體凝結性能影響的研究. 礦業研究與開發, 2018, 38(11):35
      [7] Elyamany H E, Abd E A E M, Elshaboury A M. Setting time and 7-day strength of geopolymer mortar with various binders. Constr Build Mater, 2018, 187: 974 doi: 10.1016/j.conbuildmat.2018.08.025
      [8] Wang X F. Green mine construction planning scheme of jinchuan no. 2 mining area. Mod Min, 2017(5): 252

      王曉帆. 金川二礦區綠色礦山建設規劃方案. 現代礦業, 2017(5):252
      [9] Wu A X, Wang H J. Theory and Technology of Metal Mine Cemented Paste Backfill. Beijing: Science Press, 2015

      吳愛祥, 王洪江. 金屬礦膏體充填理論與技術. 科學出版社, 2015
      [10] Jiang L Z, Yan B L, Liu C, et al. Revision introduction of GB/T1346 water consumption for cement standard consistency, setting time and stability test method. Cement, 2012(9): 40

      江麗珍, 顏碧蘭, 劉晨, 等. GB/T1346《水泥標準稠度用水量、凝結時間、安定性檢驗方法》修訂內容介紹. 水泥, 2012(9):40
      [11] Yin S H, Wu A X, Hu K, et al. The effect of solid components on the rheological and mechanical properties of cemented paste backfill. Miner Eng, 2012, 35: 61 doi: 10.1016/j.mineng.2012.04.008
      [12] Shi X Y. Effect of water-cement ratio on setting time of cement net slurry. Sichuan Cement, 2018(7): 07

      施瀟韻. 水灰比對水泥凈漿凝結時間的影響. 四川水泥, 2018(7):07
      [13] Zhang L, Wang H J, Wu A X, et al. Effect of sodium sulfide on setting property of filling paste in a lead-zinc mine. Met mine, 2016, 45(9): 44 doi: 10.3969/j.issn.1001-1250.2016.09.007

      張磊, 王洪江, 吳愛祥, 等. 硫化鈉對某鉛鋅礦充填膏體凝結性能的影響. 金屬礦山, 2016, 45(9):44 doi: 10.3969/j.issn.1001-1250.2016.09.007
      [14] Yin S H, Liu J M, Shao Y J, et al. Influence rule of early compressive strength and solidification mechanism of full tailings paste with coarse aggregate. J Cent South Univ Sci Technol, 2020, 51(2): 478

      尹升華, 劉家明, 邵亞建, 等. 全尾砂–粗骨料膏體早期抗壓強度影響規律及固化機理. 中南大學學報: 自然科學版, 2020, 51(2):478
      [15] Guo S M. Study on cementing materials and technology of mine filling based on blast furnace water quenching slag. Gansu metall, 2007, 29(4): 01

      郭生茂. 基于高爐水淬渣的礦山膠結充填材料與工藝研究. 甘肅冶金, 2007, 29(4):01
      [16] Liu X H, Wu A X, Wang H J, et al. Influence mechanism and calculation model of CPB rheological parameters. Chin J Eng, 2017, 39(2): 190

      劉曉輝, 吳愛祥, 王洪江, 等. 膏體流變參數影響機制及計算模型. 工程科學學報, 2017, 39(2):190
      [17] Yang L H, Wang H J, Wu A X, Li H, et al. Effect of mixing time on hydration kinetics and mechanical property of cemented paste backfill. Constr Build Mater, 2020, 247: 118516 doi: 10.1016/j.conbuildmat.2020.118516
      [18] Yan B H, Li C P, Wu A X, et al. Analysis of influencing factors of coarse particle migration in paste slurry pipeline. Chin J Nonferrous Met, 2018, 28(10): 201

      顏丙恒, 李翠平, 吳愛祥, 等. 膏體料漿管道輸送中粗顆粒遷移的影響因素分析. 中國有色金屬學報, 2018, 28(10):201
      [19] Boger D V. Rheology and the resource industries. Chem Eng Sci, 2009, 64(22): 4525 doi: 10.1016/j.ces.2009.03.007
      [20] Su J M, Ruan S Y, Wang Y L. MATLAB engineering mathematics. Beijing: Electronic Industry Press, 2005

      蘇金明, 阮沈勇, 王永利. MATLAB 工程數學. 北京: 電子工業出版社, 2005
      [21] Lan W T, Wu A X, Wang Y M. Formulation optimization and formation mechanism of condensate expansion and filling composites. Acta Mater Compos Sin, 2019, 36: 2

      蘭文濤, 吳愛祥, 王貽明. 凝水膨脹充填復合材料的配比優化與形成機制. 復合材料學報, 2019, 36:2
      [22] Zhang H T. The best value of multivariate functions. J Shanxi Datong Univ Sci Technol, 2017, 33(5): 1

      張海濤. 巧解多元函數的最值. 山西大同大學學報: 自然科學版, 2017, 33(5):1
    • 加載中
    圖(6) / 表(4)
    計量
    • 文章訪問數:  1249
    • HTML全文瀏覽量:  1044
    • PDF下載量:  50
    • 被引次數: 0
    出版歷程
    • 收稿日期:  2019-07-14
    • 刊出日期:  2020-07-01

    目錄

      /

      返回文章
      返回