• 《工程索引》(EI)刊源期刊
    • 中文核心期刊
    • 中國科技論文統計源期刊
    • 中國科學引文數據庫來源期刊

    留言板

    尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

    姓名
    郵箱
    手機號碼
    標題
    留言內容
    驗證碼

    基于擺幅恢復傳輸管邏輯的高性能全加器設計

    韓金亮 張躍軍 溫亮 張會紅

    韓金亮, 張躍軍, 溫亮, 張會紅. 基于擺幅恢復傳輸管邏輯的高性能全加器設計[J]. 工程科學學報, 2020, 42(8): 1065-1073. doi: 10.13374/j.issn2095-9389.2019.08.03.001
    引用本文: 韓金亮, 張躍軍, 溫亮, 張會紅. 基于擺幅恢復傳輸管邏輯的高性能全加器設計[J]. 工程科學學報, 2020, 42(8): 1065-1073. doi: 10.13374/j.issn2095-9389.2019.08.03.001
    HAN Jin-liang, ZHANG Yue-jun, WEN Liang, ZHANG Hui-hong. High-performance full adder design based on SRPL[J]. Chinese Journal of Engineering, 2020, 42(8): 1065-1073. doi: 10.13374/j.issn2095-9389.2019.08.03.001
    Citation: HAN Jin-liang, ZHANG Yue-jun, WEN Liang, ZHANG Hui-hong. High-performance full adder design based on SRPL[J]. Chinese Journal of Engineering, 2020, 42(8): 1065-1073. doi: 10.13374/j.issn2095-9389.2019.08.03.001

    基于擺幅恢復傳輸管邏輯的高性能全加器設計

    doi: 10.13374/j.issn2095-9389.2019.08.03.001
    基金項目: 國家自然科學基金資助項目(61871244, 61874078);浙江省自然科學基金資助項目LY18F040002);寧波大學王寬誠幸福基金;寧波大學教學研究資助項目(JYXMXYB201934);寧波大學研究生科研創新資助基金(2019SRIP1335)
    詳細信息
      通訊作者:

      E-mail: zhangyuejun@nbu.edu.cn

    • 中圖分類號: TN702

    High-performance full adder design based on SRPL

    More Information
    • 摘要: 為了降低硬件開銷,越來越多的加法器電路采用傳輸管邏輯來減少晶體管數量,同時導致閾值損失、性能降低等問題。本文通過對擺幅恢復邏輯與全加器電路的研究,提出一種基于擺幅恢復傳輸管邏輯(Swing restored pass transistor logic, SRPL)的全加器設計方案。該方案首先分析電路的閾值損失機理,結合晶體管傳輸高、低電平的特性,提出一種擺幅恢復傳輸管邏輯的設計方法;然后,采用對稱結構設計無延時偏差輸出的異或/同或電路,利用MOS管補償閾值損失的方式,實現異或/同或電路的全擺幅輸出;最后,將異或/同或電路融合于全加器結構,結合4T XOR求和電路與改進的傳輸門進位電路實現擺幅恢復的高性能全加器。在TSMC 65 nm工藝下,本文采用HSPICE仿真驗證所設計的邏輯功能,與文獻相比延時降低10.8%,功耗延時積(Power-delay product, PDP)減少13.5%以上。

       

    • 圖  1  3T XOR/XNOR電路和傳輸管傳輸狀態分析。(a)異或/同或電路;(b)NMOS高電平傳輸狀態;(c)PMOS低電平傳輸狀態

      Figure  1.  3T XOR/XNOR circuit and the transition analysis by pass transistor: (a) XOR/XNOR circuit; (b) logic “1” transition by NMOS; (c) logic “0” transition by PMOS

      圖  2  改進型異或/同或電路與RC模型。(a)改進型異或/同或電路;(b)AB=11 異或電路RC模型;(c)AB=00 同或電路RC模型

      Figure  2.  Improved XOR/XNOR circuit and RC model: (a) improved XOR/XNOR circuit; (b) RC model of XOR circuit for AB=11; (c) RC model of XNOR circuit for AB=00

      圖  3  擺幅恢復7T XOR/XNOR電路

      Figure  3.  Swing recovery 7T XOR/XNOR circuit

      圖  4  異或/同或電路輸出電平對比。(a) XOR;(b) XNOR

      Figure  4.  Comparison of XOR/XNOR circuit output levels: (a) XOR; (b) XNOR

      圖  5  全加器結構框圖

      Figure  5.  Full adder block diagram

      圖  6  求和電路與進位電路。(a)基于傳輸門的4T XOR求和電路;(b)基于傳輸門的進位電路;(c)改進的傳輸門進位電路

      Figure  6.  Sum circuit and carry circuit: (a) 4T XOR sum circuit based on transmission gate; (b) carry circuit based on transmission gate; (c) improved carry circuit based on transmission gate

      圖  7  SRPL-26T全加器電路

      Figure  7.  SRPL-26T full adder circuit

      圖  8  SRPL-26T全加器電路全定制版圖

      Figure  8.  SRPL-26T full adder circuit layout

      圖  9  擺幅恢復7T XOR/XNOR電路仿真結果。(a)仿真波形圖;(b)不同負載下PDP對比

      Figure  9.  Swing recovery of 7T XOR/XNOR circuit: (a) simulation waveform; (b) PDP results under different load conditions

      圖  10  不同電壓與不同負載下全加器電路仿真結果。(a)不同電壓下全加器電路功耗對比;(b)不同電壓下全加器電路延時對比;(c)不同電壓下全加器電路PDP對比;(d)不同負載下全加器電路PDP對比

      Figure  10.  Simulation results of full adder circuit under different voltages and loads: (a) power results for different voltages; (b) delay results for different voltages; (c) PDP results for different voltages; (d) PDP results under different load conditions

      表  1  擺幅恢復7T XOR/XNOR電路與相關文獻比較結果

      Table  1.   7T XOR/XNOR circuit and comparison results of related literature

      ReferenceNumbers of TransistorsDelay/psPower/μWPDP/aJImprovementPDP/%
      [20]879.381.77140.5014.3
      [21]6131.211.25164.010
      [22]1270.211.72120.7626.4
      [23]1080.651.63131.4619.8
      Proposed1464.761.4291.9643.9
      下載: 導出CSV

      表  2  全加器電路與相關文獻比較結果

      Table  2.   Full adder circuit and related literature comparison results

      Full AdderNumbers of TransistorsArea/(17.78 μm2)Threshold lossDelay/psPower/μWPDP/aJImprovement PDP/%
      SERF[4]100.80YES188.233.68692.6911.5
      10T[5]100.77YES173.623.24562.5328.1
      CMOS[7]281.66NO154.014.24653.0016.6
      TGA[8]201.64NO120.604.57551.1429.6
      TFA[9]161.23NO117.334.48525.6432.8
      14T[21]141.00NO194.754.02782.900
      DPL[22]282.09NO125.814.61580.0025.9
      CPL[24]322.68NO112.525.85658.2416.0
      Hybrid[25]161.47NO116.354.65541.0330.9
      Proposed261.73NO100.404.53454.8141.9
      下載: 導出CSV
      中文字幕在线观看
    • [1] Jitendra K S, Srinivasulu A, Singh B P. A new low-power full-adder cell for low voltage using CNTFETs // 2017 9th International Conference on Electronics, Computers and Artificial Intelligence (ECAI). Targoviste, 2017: 1
      [2] Tirumalasetty V R, Machupalli M R. Design and analysis of low power high-speed 1-bit full adder cells for VLSI applications. <italic>Int J Electron</italic>, 2019, 106(4): 521 doi: 10.1080/00207217.2018.1545256
      [3] Mewada M, Zaveri M, Thakker R. Improving the performance of transmission gate and hybrid CMOS full adders in chain and tree structure architectures. <italic>Integration</italic>, 2019, 69: 381 doi: 10.1016/j.vlsi.2019.09.002
      [4] Shalem R, John E, John L K. A novel low power energy recovery full adder cell // Proceedings 9th Great Lakes Symposium on VLSI. Ypsilanti, 1999: 380
      [5] Dokania V, Verma R, Guduri M, et al. Design of 10t full adder cell for ultralow-power applications. <italic>Ain Shams Eng J</italic>, 2018, 9(4): 2363 doi: 10.1016/j.asej.2017.05.004
      [6] Suman M, Samanta J, Chowdhury D, et al. Relative performance analysis of different CMOS full adder circuits. <italic>Int J Comput Appl</italic>, 2015, 114(6): 8
      [7] Brzozowski I, Kos A. Designing of low-power data oriented adders. <italic>Microelectron J</italic>, 2014, 45(9): 1177 doi: 10.1016/j.mejo.2014.04.022
      [8] Mehrabani Y S, Eshghi M. A symmetric, multi-threshold, high-speed and efficient-energy 1-bit full adder cell design using CNFET technology. <italic>Circuits Syst Signal Process</italic>, 2015, 34(3): 739 doi: 10.1007/s00034-014-9887-1
      [9] Basireddy H R, Challa K, Nikoubin T. Hybrid logical effort for hybrid logic style full adders in multistage structures. <italic>IEEE Trans Very Large Scale Integr Syst</italic>, 2019, 27(5): 1138 doi: 10.1109/TVLSI.2018.2889833
      [10] Mehrabani Y S, Eshghi M. Noise and process variation tolerant, low-power, high-speed, and low-energy full adders in CNFET technology. <italic>IEEE Trans Very Large Scale Integr Syst</italic>, 2016, 24(11): 3268 doi: 10.1109/TVLSI.2016.2540071
      [11] Ahmadpour S S, Mosleh M, Heikalabad S R. A revolution in nanostructure designs by proposing a novel QCA full-adder based on optimized 3-input XOR. <italic>Physica B-Condensed Matter</italic>, 2018, 550: 383 doi: 10.1016/j.physb.2018.09.029
      [12] Ramachandran S, Sanapala K. Ultra-low-voltage GDI-based hybrid full adder design for area and energy-efficient computing systems. <italic>IET Circuits Devices Syst</italic>, 2019, 13(4): 465 doi: 10.1049/iet-cds.2018.5559
      [13] Ahmed R U, Saha P. Implementation topology of full adder cells. <italic>Procedia Comput Sci</italic>, 2019, 165: 676 doi: 10.1016/j.procs.2020.01.063
      [14] Amini-Valashani M, Ayat M, Mirzakuchaki S. Design and analysis of a novel low-power and energy-efficient 18T hybrid full adder. <italic>Microelectron J</italic>, 2018, 74: 49 doi: 10.1016/j.mejo.2018.01.018
      [15] Valashani M A, Mirzakuchaki S. A novel fast, low-power and high-performance XOR-XNOR cell // 2016 IEEE International Symposium on Circuits and Systems (ISCAS). Montreal, 2016: 694
      [16] Malini P, Balaji G N, Boopathiraja K, et al. Design of swing dependent XOR-XNOR gates based hybrid full adder // 2019 5th International Conference on Advanced Computing & Communication Systems (ICACCS). Coimbatore, 2019: 1164
      [17] Kandpal J, Tomar A, Adhikari S, et al. Design of low power and high speed XOR/XNOR circuit using 90 nm CMOS technology // 2019 2nd International Conference on Innovations in Electronics, Signal Processing and Communication (IESC). Shillong, 2019: 221
      [18] Kumar P, Sharma R K. Low voltage high performance hybrid full adder. <italic>Eng Sci Technol Int J</italic>, 2016, 19(1): 559
      [19] Naseri H, Timarchi S. Low-power and fast full adder by exploring new XOR and XNOR gates. <italic>IEEE Trans Very Large Scale Integr </italic>(<italic>VLSI</italic>)<italic>Syst</italic>, 2018, 26(8): 1481 doi: 10.1109/TVLSI.2018.2820999
      [20] Goel S, Kumar A, Bayoumi M A. Design of robust, energy-efficient full adders for deep-submicrometer design using hybrid-CMOS logic style. <italic>IEEE Trans Very Large Scale Integr </italic>(<italic>VLSI</italic>)<italic>Syst</italic>, 2006, 14(12): 1309 doi: 10.1109/TVLSI.2006.887807
      [21] Radhakrishnan D. Low-voltage low-power CMOS full adder. <italic>IEE Proc-Circuits</italic>,<italic>Devices Syst</italic>, 2001, 148(1): 19 doi: 10.1049/ip-cds:20010170
      [22] Shanmugam Y, Mangalam H. Comparative analysis of design of low power full adder structures for deep sub-micron technology. <italic>Asian J Res Social Sci Humanities</italic>, 2017, 7(2): 141
      [23] Chang C H, Gu J M, Zhang M Y. A review of 0.18-/spl mu/m full adder performances for tree structured arithmetic circuits. <italic>IEEE Trans Very Large Scale Integr </italic>(<italic>VLSI</italic>)<italic>Syst</italic>, 2005, 13(6): 686 doi: 10.1109/TVLSI.2005.848806
      [24] Navi K, Maeen M, Foroutan V, et al. A novel low-power full-adder cell for low voltage. <italic>Integr VLSI J</italic>, 2009, 42(4): 457 doi: 10.1016/j.vlsi.2009.02.001
      [25] Bhattacharyya P, Kundu B, Ghosh S, et al. Performance analysis of a low-power high-speed hybrid 1-bit full adder circuit. <italic>IEEE Trans Very Large Scale Integr </italic>(<italic>VLSI</italic>)<italic>Syst</italic>, 2015, 23(10): 2001 doi: 10.1109/TVLSI.2014.2357057
    • 加載中
    圖(10) / 表(2)
    計量
    • 文章訪問數:  1859
    • HTML全文瀏覽量:  1252
    • PDF下載量:  56
    • 被引次數: 0
    出版歷程
    • 收稿日期:  2019-08-03
    • 刊出日期:  2020-09-11

    目錄

      /

      返回文章
      返回