• 《工程索引》(EI)刊源期刊
    • 中文核心期刊
    • 中國科技論文統計源期刊
    • 中國科學引文數據庫來源期刊

    留言板

    尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

    姓名
    郵箱
    手機號碼
    標題
    留言內容
    驗證碼

    弱光照條件下交通標志檢測與識別

    趙坤 劉立 孟宇 孫若燦

    趙坤, 劉立, 孟宇, 孫若燦. 弱光照條件下交通標志檢測與識別[J]. 工程科學學報, 2020, 42(8): 1074-1084. doi: 10.13374/j.issn2095-9389.2019.08.14.003
    引用本文: 趙坤, 劉立, 孟宇, 孫若燦. 弱光照條件下交通標志檢測與識別[J]. 工程科學學報, 2020, 42(8): 1074-1084. doi: 10.13374/j.issn2095-9389.2019.08.14.003
    ZHAO Kun, LIU Li, MENG Yu, SUN Ruo-can. Traffic signs detection and recognition under low-illumination conditions[J]. Chinese Journal of Engineering, 2020, 42(8): 1074-1084. doi: 10.13374/j.issn2095-9389.2019.08.14.003
    Citation: ZHAO Kun, LIU Li, MENG Yu, SUN Ruo-can. Traffic signs detection and recognition under low-illumination conditions[J]. Chinese Journal of Engineering, 2020, 42(8): 1074-1084. doi: 10.13374/j.issn2095-9389.2019.08.14.003

    弱光照條件下交通標志檢測與識別

    doi: 10.13374/j.issn2095-9389.2019.08.14.003
    基金項目: 國家重點研發計劃資助項目(2018YFE0192900,2018YFC0810500,2018YFC0604403);國家高技術研究發展計劃資助項目(2011AA060408);中央高校基本科研業務費專項資金資助項目(FRF-TP-17-010A2)
    詳細信息
      通訊作者:

      E-mail:myu@ustb.edu.cn

    • 中圖分類號: TP391.4

    Traffic signs detection and recognition under low-illumination conditions

    More Information
    • 摘要: 針對弱光照條件下交通標志易發生漏檢和定位不準的問題,本文提出了增強YOLOv3(You only look once)檢測算法,一種實時自適應圖像增強與優化YOLOv3網絡結合的交通標志檢測與識別方法。首先構建了大型復雜光照中國交通標志數據集;然后針對復雜的弱光照圖像提出自適應增強算法,通過調整圖像亮度和對比度強化交通標志與背景之間的差異;最后采用YOLOv3網絡框架檢測交通標志。為了降低先驗錨點框設置精度以及圖像中背景與前景比例嚴重失衡對檢測精度造成的影響,優化了先驗錨點框聚類算法和網絡的損失函數。對比實驗結果表明,在實時性大致相當的情況下,本文提出的增強YOLOv3檢測算法較標準YOLOv3算法對交通標志有更高的回歸精度和置信度,召回率和準確率分別提高0.96%和0.48%。

       

    • 圖  1  不同天氣及光照條件的圖像樣本. (a)陰天; (b)雨雪天; (c)光照充足; (d)光照不足

      Figure  1.  Image samples under different weather and illumination conditions: (a) overcast; (b) rain and snow; (c) sufficient illumination; (d) insufficient illumination

      圖  2  交通標志數據分布示意圖

      Figure  2.  Data distribution diagram for traffic signs

      圖  3  自適應Gamma校正流程圖

      Figure  3.  Flow diagram of adaptive gamma correction

      圖  4  聚類中心數目測試結果

      Figure  4.  Test results of number for cluster centers

      圖  5  優化前后損失值示意圖

      Figure  5.  Loss value before and after optimization

      圖  6  網絡參數圖

      Figure  6.  Network parameter diagram

      圖  7  整體光照不足的圖像. (a)圖像處理前;(b)圖像處理后;(c)圖像處理前的像素概率直方圖;(d)圖像處理后的像素概率直方圖

      Figure  7.  Images with low overall illumination: (a) image before processing; (b) image after processing; (c) pixel probability histograms of image before processing; (d) pixel probability histograms of image after processing

      圖  9  光照充足圖像。(a)圖像處理前;(b)圖像處理后;(c)圖像處理前像素概率直方圖;(d)圖像處理后像素概率直方圖

      Figure  9.  Images with sufficient illumination: (a) image before processing; (b) image after processing; (c) pixel probability histograms of image before processing; (d) pixel probability histograms of image after processing

      圖  8  局部光照不足圖像。(a)圖像處理前;(b)圖像處理后;(c)圖像處理前像素概率直方圖;(d)圖像處理后像素概率直方圖

      Figure  8.  Images with low local illumination: (a) image before processing; (b) image after processing; (c) pixel probability histograms of image before processing; (d) pixel probability histograms of image after processing

      圖  10  不同算法測試結果可視化對比. (a, b)標準YOLOv3;(c, d)改進YOLOv3

      Figure  10.  Visual comparison of different algorithm for test results: (a, b) standard YOLOv3; (c, d) improved YOLOv3

      圖  11  不同算法測試結果可視化對比。(a, b)標準YOLOv3;(c, d)增強YOLOv3

      Figure  11.  Visual comparison of different algorithms for test results: (a, b) standard YOLOv3; (c, d) enhanced YOLOv3

      表  1  圖像分類

      Table  1.   Image classification

      Contrast categoryIntensity mean, λImage category
      IL≥ 0.5Low contrast and high brightness
      < 0.5Low contrast and low brightness
      IH≥ 0.5High contrast and high brightness
      < 0.5High contrast and low brightness
      下載: 導出CSV

      表  2  在LISA數據集上的測試結果(閾值=0.8,IOU=0.7)

      Table  2.   Test results on LISA dataset (threshold = 0.8, IOU = 0.7)

      AlgorithmNumber of traffic signsRecall/%Accuracy/%
      Standard YOLOv3144688.8099.07
      Improved YOLOv3144691.3698.44
      下載: 導出CSV

      表  3  在弱光照交通標志數據集上的測試結果(閾值=0.8,IOU=0.7)

      Table  3.   Test results on weak illumination traffic signs dataset (threshold = 0.8, IOU = 0.7)

      AlgorithmDark images with 2163 traffic signsBright images with 2315 traffic signsAll images with 4478 traffic signsRun time/ms
      Recall/%Accuracy/%Recall/%Accuracy/%Recall/%Accuracy/%
      Standard YOLOv3 96.30 98.91 98.49 99.30 97.43 99.11 33
      Enhanced YOLOv3 98.06 99.44 98.70 99.74 98.39 99.59 36
      下載: 導出CSV
      中文字幕在线观看
    • [1] Zhang X Y, Gao H B, Zhao J H, et al. Overview of deep learning intelligent driving methods. <italic>J Tsinghua Univ Sci Technol</italic>, 2018, 58(4): 438

      張新鈺, 高洪波, 趙建輝, 等. 基于深度學習的自動駕駛技術綜述. 清華大學學報: 自然科學版, 2018, 58(4):438
      [2] Salti S, Petrelli A, Tombari F, et al. Traffic sign detection via interest region extraction. <italic>Pattern Recognit</italic>, 2015, 48(4): 1039 doi: 10.1016/j.patcog.2014.05.017
      [3] Eichner M L, Breckon T P. Integrated speed limit detection and recognition from real-time video // 2008 IEEE Intelligent Vehicles Symposium. Eindhoven, 2008: 626
      [4] Lorsakul A, Suthakorn J. Traffic sign recognition using neural network on opencv: toward intelligent vehicle/driver assistance system. <italic>Intell Service Rob</italic>, 2007: 1
      [5] Barnes N, Zelinsky A. Real-time radial symmetry for speed sign detection // IEEE Intelligent Vehicles Symposium. Parma, 2004: 566
      [6] Loy G, Barnes N. Fast shape-based road sign detection for a driver assistance system // 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Sendai, 2004: 70
      [7] Maldonado-Bascon S, Lafuente-Arroyo S, Gil-Jimenez P, et al. Road-sign detection and recognition based on support vector machines. <italic>IEEE Trans Intell Transportation Syst</italic>, 2007, 8(2): 264 doi: 10.1109/TITS.2007.895311
      [8] Bahlmann C, Zhu Y, Ramesh V, et al. A system for traffic sign detection, tracking, and recognition using color, shape, and motion information // IEEE Proceedings. Intelligent Vehicles Symposium. Las Vegas, 2005: 255
      [9] Girshick R, Donahue J, Darrell T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation // 2014 IEEE Conference on Computer Vision and Pattern Recognition. Columbus, 2014: 580
      [10] Uijlings J R R, van de Sande K E A, Gevers T, et al. Selective search for object recognition. <italic>Int J Comput Vision</italic>, 2013, 104(2): 154 doi: 10.1007/s11263-013-0620-5
      [11] He K M, Zhang X Y, Ren S Q, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition. <italic>IEEE Transactions Pattern Anal Mach Intell</italic>, 2015, 37(9): 1904 doi: 10.1109/TPAMI.2015.2389824
      [12] Girshick R. Fast R-CNN // 2015 IEEE International Conference on Computer Vision (ICCV). Santiago, 2015: 1440
      [13] Ren S Q, He K M, Girshick R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks. <italic>IEEE Transactions Pattern Anal Mach Intell</italic>, 2017, 39(6): 1137 doi: 10.1109/TPAMI.2016.2577031
      [14] Redmon J, Divvala S, Girshick R, et al. You only look once: Unified, real-time object detection // 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas, 2016: 779
      [15] Liu W, Anguelov D, Erhan D, et al. SSD: Single shot multibox detector // European Conference on Computer Vision. Amsterdam, 2016: 21
      [16] Ciresan D, Meier U, Masci J, et al. A committee of neural networks for traffic sign classification // The 2011 International Joint Conference on Neural Networks. San Jose, 2011: 1918
      [17] Sermanet P, LeCun Y. Traffic sign recognition with multi-scale convolutional networks // The 2011 International Joint Conference on Neural Networks. San Jose, 2011: 2809
      [18] Ciresan D, Meier U, Masci J, et al. Multi-column deep neural network for traffic sign classification. <italic>Neural Networks</italic>, 2012, 32: 333 doi: 10.1016/j.neunet.2012.02.023
      [19] Jin J Q, Fu K, Zhang C S. Traffic sign recognition with hinge loss trained convolutional neural networks. <italic>IEEE Trans-actions Intell Transportation Syst</italic>, 2014, 15(5): 1991 doi: 10.1109/TITS.2014.2308281
      [20] Mogelmose A, Trivedi M M, Moeslund T B. Vision-based traffic sign detection and analysis for intelligent driver assis-tance systems: perspectives and survey. <italic>IEEE Transactions Intell Transportation Syst</italic>, 2012, 13(4): 1484 doi: 10.1109/TITS.2012.2209421
      [21] Stallkamp J, Schlipsing M, Salmen J, et al. Man vs. computer: Benchmarking machine learning algorithms for traffic sign recognition. <italic>Neural Networks</italic>, 2012, 32: 323 doi: 10.1016/j.neunet.2012.02.016
      [22] Timofte R, Zimmermann K, Gool L V. Multi-view traffic sign detection, recognition, and 3D localization. <italic>Mach Vision Appl</italic>, 2014, 25(3): 633 doi: 10.1007/s00138-011-0391-3
      [23] Yu C C. Research on Traffic Sign Detection and Recognition Algorithm[Dissertation]. Chengdu: Southwest Jiaotong University, 2017

      余超超. 交通標志檢測與識別算法研究[學位論文]. 成都: 西南交通大學, 2017
      [24] Celik T, Tjahjadi T. Automatic image equalization and contrast enhancement using Gaussian mixture modeling. <italic>IEEE Trans Image Process</italic>, 2011, 21(1): 145
      [25] Redmon J, Farhadi A. YOLOv3: an Incremental Improvement[J/OL]. arXiv preprint (2018-04-08)[2019-08-14]. http://arxiv.org/abs/1804.02767
      [26] Redmon J, Farhadi A. YOLO9000: Better, faster, stronger // 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu, 2017: 6517
    • 加載中
    圖(11) / 表(3)
    計量
    • 文章訪問數:  2122
    • HTML全文瀏覽量:  1367
    • PDF下載量:  100
    • 被引次數: 0
    出版歷程
    • 收稿日期:  2019-08-14
    • 刊出日期:  2020-09-11

    目錄

      /

      返回文章
      返回