• 《工程索引》(EI)刊源期刊
    • 中文核心期刊
    • 中國科技論文統計源期刊
    • 中國科學引文數據庫來源期刊

    留言板

    尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

    姓名
    郵箱
    手機號碼
    標題
    留言內容
    驗證碼

    超聲對熔鹽電解法制備Al-7Si-Sc合金組織的影響

    郭志超 劉軒 薛濟來 張鵬舉

    郭志超, 劉軒, 薛濟來, 張鵬舉. 超聲對熔鹽電解法制備Al-7Si-Sc合金組織的影響[J]. 工程科學學報, 2019, 41(9): 1135-1141. doi: 10.13374/j.issn2095-9389.2019.09.004
    引用本文: 郭志超, 劉軒, 薛濟來, 張鵬舉. 超聲對熔鹽電解法制備Al-7Si-Sc合金組織的影響[J]. 工程科學學報, 2019, 41(9): 1135-1141. doi: 10.13374/j.issn2095-9389.2019.09.004
    GUO Zhi-chao, LIU Xuan, XUE Ji-lai, ZHANG Peng-ju. Effects of ultrasound on the microstructure of Al-7Si-Sc alloy prepared via molten salt electrolysis[J]. Chinese Journal of Engineering, 2019, 41(9): 1135-1141. doi: 10.13374/j.issn2095-9389.2019.09.004
    Citation: GUO Zhi-chao, LIU Xuan, XUE Ji-lai, ZHANG Peng-ju. Effects of ultrasound on the microstructure of Al-7Si-Sc alloy prepared via molten salt electrolysis[J]. Chinese Journal of Engineering, 2019, 41(9): 1135-1141. doi: 10.13374/j.issn2095-9389.2019.09.004

    超聲對熔鹽電解法制備Al-7Si-Sc合金組織的影響

    doi: 10.13374/j.issn2095-9389.2019.09.004
    基金項目: 

    國家自然科學基金資助項目 51434005

    國家自然科學基金資助項目 51704020

    國家自然科學基金資助項目 51874035

    北京市自然科學基金資助項目 2184110

    詳細信息
      通訊作者:

      薛濟來, E-mail: jx@ustb.edu.cn

    • 中圖分類號: TS912+.3

    Effects of ultrasound on the microstructure of Al-7Si-Sc alloy prepared via molten salt electrolysis

    More Information
    • 摘要: Al-Si系合金在現代工業、交通等領域廣泛應用,合金元素鈧可進一步改善其加工和使用性能.采用超聲協同熔鹽電解法制備Al-7S-Sc三元合金,研究探索超聲作用對合金組織及強化相分布的影響.發現超聲協同熔鹽電解制得合金中Sc含量提高,團簇共晶硅組織和AlSi2Sc2相顯著細化,共晶硅團簇尺寸由約500降低至200 μm,減小約60%,細化后AlSi2Sc2相分布均勻.超聲協同電解法可顯著優化Al-7Si-Sc合金組織,有助于控制改善現行工藝中合金元素偏聚、組織不均勻現象.

       

    • 圖  1  超聲協同熔鹽電解設備示意圖

      Figure  1.  Schematic of molten salt electrolysis equipment assisted by ultrasound

      圖  2  合金中共晶硅形貌及共晶硅片層厚度分布. (a)Al-7Si;(b)電解;(c)電解-超聲

      Figure  2.  Morphology and thickness of eutectic silicon phase in different alloys: (a) Al-7Si alloy; (b) electrolytic alloy; (c) ultrasonic-aided electrolytic alloy

      圖  3  合金中AlSi2Sc2相及其能譜

      Figure  3.  AlSi2Sc2 phase in the alloy and corresponding energy spectrum

      圖  4  含長條狀AlSi2Sc2相區域元素分布面掃圖

      Figure  4.  EDS mapping of the area containing long AlSi2Sc2 phase

      圖  5  電解(a, b)與超聲-電解(c, d)合金中底、中部AlSi2Sc2的分布

      Figure  5.  Distribution of AlSi2Sc2 in the bottom and middle areas of electrolytic alloy (a, b) and ultrasonic assisted electrolytic alloy (c, d)

      表  1  電解與電解-超聲處理下Al-7Si-Sc合金中鈧質量分數

      Table  1.   Sc mass fraction of electrolytic alloys treated with and without ultrasound ?%

      制備方法 No.1 No.2 No.3 均值
      電解 1.20 1.14 1.11 1.15
      電解-超聲 1.52 1.47 1.45 1.48
      下載: 導出CSV
      中文字幕在线观看
    • [1] Wang E R, Hui X D, Wang J G, et al. Effects of precipitates on the fracture behavior of cast eutectic Al-Si alloys. J Univ Sci Technol Beijing, 2011, 33(12): 1508 https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201112012.htm

      王恩睿, 惠希東, 王建國, 等. 鑄造共晶鋁硅合金中析出相對斷裂行為的影響. 北京科技大學學報, 2011, 33(12): 1508 https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201112012.htm
      [2] Yu X J. Effect of Rare Earth Y on Microstructure and Properties of A356 Aluminum Alloy [Dissertation]. Changzhou: Jiangsu University of Technology, 2015

      于小健. 稀土Y對A356合金微觀組織和性能的影響[學位論文]. 常州: 江蘇理工學院, 2015
      [3] Liang H Y, Zhang Y, Mao X M. Interface response function and microstructure selection for Al-Si alloys during rapid equiaxed solidification. J Univ Sci Technol Beijing, 2009, 31(7): 871 doi: 10.3321/j.issn:1001-053X.2009.07.012

      梁紅玉, 張勇, 毛協民. Al-Si合金快速等軸凝固界面響應函數及組織選擇. 北京科技大學學報, 2009, 31(7): 871 doi: 10.3321/j.issn:1001-053X.2009.07.012
      [4] Zhang A S, Gong Y X. Effects of Y and Sc on microstructure and properties of A356 alloy. Spec Cast Nonferrous Alloys, 2014, 34(10): 1032 https://www.cnki.com.cn/Article/CJFDTOTAL-TZZZ201410009.htm

      章愛生, 龔遠興. Y和Sc對A356合金組織與性能的影響. 特種鑄造及有色合金, 2014, 34(10): 1032 https://www.cnki.com.cn/Article/CJFDTOTAL-TZZZ201410009.htm
      [5] Chanyathunyaroj K, Patakham U, Kou S, et al. Microstructural evolution of iron-rich intermetallic compounds in scandium modified Al-7Si-0.3Mg alloys. J Alloys Compd, 2017, 692: 865 doi: 10.1016/j.jallcom.2016.09.132
      [6] Muhammad A, Xu C, W X J, et al. High strength aluminum cast alloy: A Sc modification of a standard Al-Si-Mg cast alloy. Mater Sci Eng A, 2014, 604: 122 doi: 10.1016/j.msea.2014.03.005
      [7] Prukkanon W, Srisukhumbowornchai N, Limmaneevichitr C. Modification of hypoeutectic Al-Si alloys with scandium. J Alloys Compd, 2009, 477(1-2): 454 doi: 10.1016/j.jallcom.2008.10.016
      [8] Patakham U, Kajornchaiyakul J, Limmaneevichitr C. Modification mechanism of eutectic silicon in Al-6Si-0.3Mg alloy with scandium. J Alloys Compd, 2013, 575: 273 doi: 10.1016/j.jallcom.2013.05.139
      [9] Riva S, Yusenko K V, Lavery N P, et al. The scandium effect in multicomponent alloys. Int Mater Rev, 2016, 61(3): 203 doi: 10.1080/09506608.2015.1137692
      [10] Qian Y, Xue J L, Wang Z J, et al. Mechanical properties evaluation of Zr addition in L12-Al3 (Sc1-xZrx) using first-principles calculation. JOM, 2016, 68(5): 1293 doi: 10.1007/s11837-016-1880-7
      [11] Belov N A, Naumova E A, Alabin A N, et al. Effect of scandium on structure and hardening of Al-Ca eutectic alloys. J Alloys Compd, 2015, 646: 741 doi: 10.1016/j.jallcom.2015.05.155
      [12] Patakham U, Kajornchaiyakul J, Limmaneevichitr C. Grain refinement mechanism in an Al-Si-Mg alloy with scandium. J Alloys Compd, 2012, 542: 177 doi: 10.1016/j.jallcom.2012.07.018
      [13] Liu X, Guo Z C, Xue J L, et al. Effects of synergetic ultrasound on the Sc yield and primary Al3Sc in the Al-Sc alloy prepared by the molten salts electrolysis. Ultrason Sonochem, 2019, 52: 33 doi: 10.1016/j.ultsonch.2018.09.009
      [14] Li L X, Wang T S, Huang X L, et al. Research progress on the preparation of Al-Sc master alloy by molten salt electrolysis method. Mater Rev, 2018, 32(21): 3768 doi: 10.11896/j.issn.1005-023X.2018.21.013

      李亮星, 王濤勝, 黃茜琳, 等. 熔鹽電解法制備鋁鈧中間合金研究進展. 材料導報, 2018, 32(21): 3768 doi: 10.11896/j.issn.1005-023X.2018.21.013
      [15] Tian Z L, Yang S, Lai Y Q, et al. Progress on preparing Al-Sc master alloy by molten salt electrolysis. Conserv Utiliz Miner Resour, 2013(5): 55 https://www.cnki.com.cn/Article/CJFDTOTAL-KCBH201305014.htm

      田忠良, 楊樹, 賴延清, 等. 熔鹽電解法制備鋁-鈧中間合金的研究進展. 礦產保護與利用, 2013(5): 55 https://www.cnki.com.cn/Article/CJFDTOTAL-KCBH201305014.htm
      [16] Li G Y, Yang S H, Li J D, et al. Preparation of Al-Sc alloys by molten salt electrolysis. Light Metals, 2007(5): 54 doi: 10.3969/j.issn.1002-1752.2007.05.015

      李廣宇, 楊少華, 李繼東, 等. 熔鹽電解法制備鋁鈧合金的研究. 輕金屬, 2007(5): 54 doi: 10.3969/j.issn.1002-1752.2007.05.015
      [17] Harata M, Yasuda K, Yakushiji H, et al. Electrochemical production of Al-Sc alloy in CaCl2-Sc2O3 molten salt. J Alloys Compd, 2009, 474(1-2): 124 doi: 10.1016/j.jallcom.2008.06.110
      [18] Royset J, Ryum N. Scandium in aluminium alloys. Int Mater Rev, 2005, 50(1): 19 doi: 10.1179/174328005X14311
      [19] Han Z Y. Al-Sc Alloy Prepared by Molten Salt Electrolyzing and the Microstructure Analysis [Dissertation]. Zhengzhou: Zhengzhou University, 2011

      韓昭勇. 熔鹽電解法制備鋁鈧合金及其微觀結構分析[學位論文]. 鄭州: 鄭州大學, 2011
      [20] He B, Qin M, Liang L Q, et al. Effect of Sc content on microstructure and mechanical properties of Al-Si casting alloy. Foundry Technol, 2017, 38(10): 2360 https://www.cnki.com.cn/Article/CJFDTOTAL-ZZJS201710010.htm

      何兵, 覃銘, 梁柳青, 等. Sc含量對Al-Si鑄造合金組織與力學性能的影響. 鑄造技術, 2017, 38(10): 2360 https://www.cnki.com.cn/Article/CJFDTOTAL-ZZJS201710010.htm
      [21] Zhang L, Eskin D G, Katgerman L. Influence of ultrasonic melt treatment on the formation of primary intermetallics and related grain refinement in aluminum alloys. J Mater Sci, 2011, 46(15): 5252 doi: 10.1007/s10853-011-5463-2
      [22] Eskin G I, Eskin D G. Effects of ultrasonic (cavitation) melt processing on the structure refinement and property improvement of cast and worked aluminum alloys. Mater Sci Forum, 2002, 396-402: 77 doi: 10.4028/www.scientific.net/MSF.396-402.77
      [23] Xu T, Zhang L H, Li R Q, et al. Numerical simulation and experimental study of multi-field coupling for semi-continuous casting of large-scale aluminum ingots with ultrasonic treatment. Chin J Eng, 2016, 38(9): 1270 doi: 10.13374/j.issn2095-9389.2016.09.011

      徐婷, 張立華, 李瑞卿, 等. 鋁合金大鑄錠超聲半連鑄多場耦合的數值模擬與實驗研究. 工程科學學報, 2016, 38(9): 1270 doi: 10.13374/j.issn2095-9389.2016.09.011
      [24] Lin C, Wu S S, Lu S L, et al. Microstructure and mechanical properties of rheo-diecast hypereutectic Al-Si alloy with 2%Fe assisted with ultrasonic vibration process. J Alloys Compd, 2013, 568: 42 doi: 10.1016/j.jallcom.2013.03.089
      [25] Eskin G I, Eskin D G. Some control mechanisms of spatial solidification in light alloys. Z Metallkd, 2004, 95(8): 682 doi: 10.3139/146.018006
      [26] Eskin G I. Improvement of the structure and properties of ingots and worked aluminum alloy semifinished products by melt ultrasonic treatment in a cavitation regime. Metallurgist, 2010, 54(7-8): 505 doi: 10.1007/s11015-010-9331-0
      [27] Zhong Z T, Li R Q, Li X Q, et al. Effect of ultrasonication on the microstructure and macrosegregation of a large 2219 aluminum ingot. Chin J Eng, 2017, 39(9): 1347 doi: 10.13374/j.issn2095-9389.2017.09.007

      鐘貞濤, 李瑞卿, 李曉謙, 等. 超聲處理對2219大規格鋁錠微觀組織與宏觀偏析的影響. 工程科學學報, 2017, 39(9): 1347 doi: 10.13374/j.issn2095-9389.2017.09.007
      [28] Chen D X, Li X Q, Li Z H, et al. Microstructure and macro-segregation law of ultrasonic cast 7050 aluminum alloy ingots. J Univ Sci Technol Beijing, 2012, 34(6): 666 https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201206010.htm

      陳鼎欣, 李曉謙, 黎正華, 等. 超聲鑄造7050鋁合金的微觀組織和宏觀偏析規律. 北京科技大學學報, 2012, 34(6): 666 https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201206010.htm
      [29] Wang K, Zhang L H, Li Z H, et al. Mechanism of ultrasonic field on the particle micro-agglomeration and interfacial bonding of SiCp/7085 composites. Chin J Eng, 2017, 39(2): 238 doi: 10.13374/j.issn2095-9389.2017.02.011

      王坤, 張立華, 黎正華, 等. 超聲外場對SiCp/7085復合材料顆粒微觀團聚與界面結合的作用機理. 工程科學學報, 2017, 39(2): 238 doi: 10.13374/j.issn2095-9389.2017.02.011
      [30] Wang Y, Li X Q, Li R Q, et al. Fine grain mechanism of ultrasonic vibration depth in large diameter aluminum ingot hot-top casting. Chin J Eng, 2019, 41(1): 96 doi: 10.13374/j.issn2095-9389.2019.01.010

      王瑩, 李曉謙, 李瑞卿, 等. 大直徑鋁錠熱頂鑄造中超聲施振深度的細晶機制工程科學學報, 2019, 41(1): 96 doi: 10.13374/j.issn2095-9389.2019.01.010
      [31] Yuan M J. Study on Na3AlF6-K3AlF6-AlF3 Low Temperature Aluminum Electrolyte System [Dissertation]. Beijing: General Research Institute for Nonferrous Metals, 2012

      袁敏娟. Na3AlF6-K3AlF6-AlF3體系低溫鋁電解質研究[學位論文]. 北京: 北京有色金屬研究總院, 2012
      [32] Murray J L, McAlister A J. The Al-Si (aluminum-silicon) system. Bull Alloy Phase Diagrams, 1984, 5(1): 74 doi: 10.1007/BF02868729
      [33] Yang J, Zhang J, Dai Y B, et al. The migration behavior of the fourth period transition metals in liquid Al: an ab initio molecular dynamics study. Comput Mater Sci, 2017, 130: 183 doi: 10.1016/j.commatsci.2017.01.001
      [34] Qian Y. Fundamental Studies on Preparation of Al-Sc-Zr Alloys by Electrolysis in Molten Salts [Dissertation]. Beijing: University of Science and Technology Beijing, 2017

      錢義. 熔鹽電解法制備鋁鈧鋯合金的基礎研究[學位論文]. 北京: 北京科技大學, 2017
      [35] Eskin D G. Ultrasonic processing of molten and solidifying aluminium alloys: overview and outlook. Mater Sci Technol, 2017, 33(6): 636 doi: 10.1080/02670836.2016.1162415
      [36] Lauterborn W, Ohl C D. Cavitation bubble dynamics. Ultrason Sonochem, 1997, 4(2): 65 doi: 10.1016/S1350-4177(97)00009-6
      [37] Eskin G I. Broad prospects for commercial application of the ultrasonic (cavitation) melt treatment of light alloys. Ultrason Sonochem, 2001, 8(3): 319 doi: 10.1016/S1350-4177(00)00074-2
      [38] Liu X, Xue J L, Guo Z C, et al. Segregation behaviors of Sc and unique primary Al3Sc in Al-Sc alloys prepared by molten salt electrolysis. J Mater Sci Technol, 2019, 35(7): 1422 doi: 10.1016/j.jmst.2019.02.002
      [39] Zhang W D, Liu Y, Yang J, et al. Effects of Sc content on the microstructure of as-cast Al-7wt. % Si alloys. Mater Charact, 2012, 66: 104 doi: 10.1016/j.matchar.2011.11.005
      [40] Zhang Z T, Li J, Yue H Y, et al. Microstructure evolution of A356 alloy under compound field. J Alloys Compd, 2009, 484(1-2): 458 doi: 10.1016/j.jallcom.2009.04.125
      [41] Yu Z F, Chen T, Liu Z. Al-Si alloy microstructure under ultrasonic condition and fractal characteristics of its isothermal microstructure. Nonferrous Met Sci Eng, 2017, 8(4): 54 https://www.cnki.com.cn/Article/CJFDTOTAL-JXYS201704010.htm

      余昭福, 陳濤, 劉政. 超聲處理Al-Si合金及其等溫組織形貌分形特征. 有色金屬科學與工程, 2017, 8(4): 54 https://www.cnki.com.cn/Article/CJFDTOTAL-JXYS201704010.htm
      [42] Zhang F, Qin A N, Liu S H, et al. Phase equilibria and solidification characteristics of the Al-Sc-Si alloys. J Mater Sci, 2016, 51(3): 1644 doi: 10.1007/s10853-015-9487-x
      [43] Pandee P, Gourlay C M, Belyakov S A, et al. AlSi2Sc2 intermetallic formation in Al-7Si-0.3Mg-xSc alloys and their effects on as-cast properties. J Alloys Compd, 2018, 731: 1159 doi: 10.1016/j.jallcom.2017.10.125
      [44] Okamoto H. Supplemental literature review of binary phase diagrams: Ag-Ni, Al-Cu, Al-Sc, C-Cr, Cr-Ir, Cu-Sc, Eu-Pb, H-V, Hf-Sn, Lu-Pb, Sb-Yb, and Sn-Y. J Phase Equilib Diffus, 2013, 34(6): 493 doi: 10.1007/s11669-013-0256-8
    • 加載中
    圖(5) / 表(1)
    計量
    • 文章訪問數:  1129
    • HTML全文瀏覽量:  490
    • PDF下載量:  9
    • 被引次數: 0
    出版歷程
    • 收稿日期:  2019-01-29
    • 刊出日期:  2019-09-01

    目錄

      /

      返回文章
      返回