• 《工程索引》(EI)刊源期刊
    • 中文核心期刊
    • 中國科技論文統計源期刊
    • 中國科學引文數據庫來源期刊

    留言板

    尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

    姓名
    郵箱
    手機號碼
    標題
    留言內容
    驗證碼

    賽博空間中的天線散射特性研究

    柴建忠 陳航宇 洪昊暉 鈔旭 趙京城

    柴建忠, 陳航宇, 洪昊暉, 鈔旭, 趙京城. 賽博空間中的天線散射特性研究[J]. 工程科學學報, 2020, 42(4): 448-454. doi: 10.13374/j.issn2095-9389.2019.09.15.002
    引用本文: 柴建忠, 陳航宇, 洪昊暉, 鈔旭, 趙京城. 賽博空間中的天線散射特性研究[J]. 工程科學學報, 2020, 42(4): 448-454. doi: 10.13374/j.issn2095-9389.2019.09.15.002
    CHAI Jian-zhong, CHEN Hang-yu, HONG Hao-hui, CHAO Xu, ZHAO Jing-cheng. Scattering characteristics of antennas in cyberspace[J]. Chinese Journal of Engineering, 2020, 42(4): 448-454. doi: 10.13374/j.issn2095-9389.2019.09.15.002
    Citation: CHAI Jian-zhong, CHEN Hang-yu, HONG Hao-hui, CHAO Xu, ZHAO Jing-cheng. Scattering characteristics of antennas in cyberspace[J]. Chinese Journal of Engineering, 2020, 42(4): 448-454. doi: 10.13374/j.issn2095-9389.2019.09.15.002

    賽博空間中的天線散射特性研究

    doi: 10.13374/j.issn2095-9389.2019.09.15.002
    詳細信息
      通訊作者:

      E-mail:zjccool@126.com

    • 中圖分類號: TN820.1

    Scattering characteristics of antennas in cyberspace

    More Information
    • 摘要: 5G網絡技術可以滿足賽博空間(Cyberspace)發展對通信平臺性能提出的高要求,大規模MIMO(Multiple-input multiple-output)天線陣列是5G核心技術之一。實際中大規模MIMO天線陣列的互耦效應會大大降低香農容量,在未來5G天線系統中,面臨的最大挑戰是如何有效消除陣列中單元天線間的互耦。針對大規模陣列天線互耦問題,應進行天線單元的散射特性研究。本文在開路狀態下“不可見”的最小散射天線基礎上,推導了最小散射天線串聯四分之一波長透明網絡的散射矩陣,證明該狀態即為短路狀態下的最小散射天線。對一種X波段波紋喇叭天線分別進行短路、開路、匹配三種負載狀態下的散射測量,根據最小散射天線理論分離出了天線的額外散射、伴隨散射和失配散射。用分離獲得的散射分量,推算了波紋喇叭天線的散射最大值和最小值,其中推算出的最小值遠低于天線匹配時的散射。用滑動短路器作為可變負載,進行預設負載狀態下波紋喇叭天線的散射測量,實測獲得了推算出的散射最大值和最小值,驗證了單元天線散射特性研究的正確性。結果說明,在進行大規模陣列的單元天線設計時,除了考慮單元天線的輻射特性之外,也要考慮天線的散射特性,以降低天線的互耦效應。

       

    • 圖  1  波紋喇叭天線結構示意圖

      Figure  1.  Structural sketch of a corrugated horn antenna

      圖  2  波紋喇叭天線的三種負載狀態(a)及天線短路、開路和匹配三種狀態的測量結果(b)

      Figure  2.  Three load states of corrugated horn antenna (a) and measurement results of antenna under short-circuit, open-circuit, and matching states (b)

      圖  3  運算得到的匹配散射、帶相移的伴隨散射

      Figure  3.  Calculated matching scattering and phase-shifted associated scattering

      圖  4  測量與運算得到的匹配散射

      Figure  4.  Matched scattering obtained by measurement and calculation

      圖  5  開路短路散射和方向圖分別計算的伴隨散射

      Figure  5.  Associated scattering calculated by open-circuit and short-circuit scattering and pattern, respectively

      圖  6  匹配散射、運算得到的帶相移的伴隨散射相位

      Figure  6.  Phase of matched scattering and calculated associated scattering with phase shift

      圖  7  失配散射與伴隨散射抵消示意

      Figure  7.  Cancellation of mismatched scattering and associated scattering

      圖  8  波紋喇叭天線的額外散射

      Figure  8.  Excess scattering of corrugated horn antenna

      圖  9  波紋喇叭天線散射的最大值和最小值

      Figure  9.  Maximum and minimum scattering of corrugated horn antenna

      圖  10  驗證天線散射區間用的滑動短路器

      Figure  10.  Sliding shorter for verifying the scattering range of the antenna

      圖  11  滑動短路器的散射. (a)14 mm處;(b)3 mm和13 mm處

      Figure  11.  Scattering while using sliding shorter: (a) at 14 mm; (b) at 3 and 13 mm

      中文字幕在线观看
    • [1] Zhou B L, Liu J, Dong X F. Research and application of VR technology in military training. Public Commun Sci Technol, 2017, 9(11): 38 doi: 10.3969/j.issn.1674-6708.2017.11.027

      周寶林, 劉軍, 董曉峰. VR技術在軍事訓練中的研究與應用. 科技傳播, 2017, 9(11):38 doi: 10.3969/j.issn.1674-6708.2017.11.027
      [2] Zhang Z M. VR development trend under 5G technology // Proceedings of the 5G LTE Network Innovation Seminar (2016). Beijing, 2016:3

      張哲銘. 5G技術下的VR發展趨勢//面向5G的LTE網絡創新研討會(2016)論文集.北京, 2016:3
      [3] Yang S P. Application prospect of 5G in military communication system. Inf Commun, 2019(6): 220 doi: 10.3969/j.issn.1673-1131.2019.06.107

      楊仕平. 5G在軍用通信系統中的應用前景. 信息通信, 2019(6):220 doi: 10.3969/j.issn.1673-1131.2019.06.107
      [4] Wang H C. Research on the Effective Capacity in Massive MIMO Wireless Communication Systems[Dissertation]. Wuhan: Huazhong University of Science & Technology, 2016

      王海潮. 基于大規模MIMO無線通信系統的有效容量研究[學位論文]. 武漢: 華中科技大學, 2016
      [5] Chen J, Pratt T G. Energy efficiency of space and polarization MIMO communications with packet erasures over wireless fading channels. IEEE Trans Wireless Commun, 2014, 13(12): 6557 doi: 10.1109/TWC.2014.2322055
      [6] Chen J, Talebi F, Pratt T. Energy efficiency of co-polarized and space-polarization MIMO architectures in packet-based communication systems // MILCOM 2013-2013 IEEE Military Communications Conference. San Diego, 2013: 311
      [7] Wu K L. Decoupling surface technology of array antenna and its application in M-MIMO and phased array system // 2017 National Conference on Microwave and Millimeter Waves. Hangzhou, 2017: 525

      吳克立. 陣列天線解耦面技術及其在M-MIMO及相控陣系統中的應用// 2017年全國微波毫米波會議. 杭州, 2017: 525
      [8] Wu Y J, Nie Z P. A new mutual coupling compensation method and its application in DOA estimation. Chin J Radio Sci, 2007, 22(4): 541 doi: 10.3969/j.issn.1005-0388.2007.04.001

      伍裕江, 聶在平. 一種新的互耦補償方法及其在DOA估計中的應用. 電波科學學報, 2007, 22(4):541 doi: 10.3969/j.issn.1005-0388.2007.04.001
      [9] Su H T, Zhang S H, Bao Z. Mutual coupling, gain and phase error calibration for transmitting array. J Electron Inf Technol, 2006, 28(5): 941

      蘇洪濤, 張守宏, 保錚. 發射陣列互耦及幅相誤差校正. 電子與信息學報, 2006, 28(5):941
      [10] Guo L Q, Zhu S P, Chen B X, et al. Calibration of mutual coupling for bi/multi-static synthetic impulse and aperture ground wave radar. Chin J Radio Sci, 2008, 23(1): 134 doi: 10.3969/j.issn.1005-0388.2008.01.024

      郭利強, 朱守平, 陳伯孝, 等. 雙/多基地綜合脈沖孔徑地波雷達的互耦校正. 電波科學學報, 2008, 23(1):134 doi: 10.3969/j.issn.1005-0388.2008.01.024
      [11] Liu Z G, Liao G S. Mutual coupling calibration for bistatic MIMO radar system. Chin J Radio Sci, 2010, 25(4): 663

      劉志國, 廖桂生. 雙基地MIMO雷達互耦校正. 電波科學學報, 2010, 25(4):663
      [12] Salehi M, Tavakoli A. A novel low mutual coupling microstrip antenna array design using defected ground structure. AEU-Int J Electron Commun, 2006, 60(10): 718 doi: 10.1016/j.aeue.2005.12.009
      [13] Yang F, Rahmat-Samii Y. Microstrip antennas integrated with electromagnetic band-gap (EBG) structures: A low mutual coupling design for array applications. IEEE Trans Antennas Propag, 2003, 51(10): 2936 doi: 10.1109/TAP.2003.817983
      [14] Mak A C K, Rowell C R, Murch R D. Isolation enhancement between two closely packed antennas. IEEE Trans Antennas Propag, 2008, 56(11): 3411 doi: 10.1109/TAP.2008.2005460
      [15] Kahn W K, Kurss H. Minimum-scattering antennas. IEEE Trans Antennas Propag, 1965, 13(5): 671 doi: 10.1109/TAP.1965.1138529
      [16] Yang Y S, Lu B, Li C, et al. Study on the wide-band scattering characteristics of pyramidal horn antenna based on microwave imaging. Air Space Defense, 2019, 2(4): 13

      楊元勝, 陸波, 李晨, 等. 基于微波成像的角錐喇叭天線寬帶電磁散射特性研究. 空天防御, 2019, 2(4):13
      [17] 馮林, 阮穎錚. 天線RCS減縮技術研究的新進展. 電子科技大學學報, 1995, 24(增刊1):23)

      Feng L, Ruan Y Z. Development of antenna’s RCS reduction. J Univ Electron Sci Technol China, 1995, 24(增刊1): 23
      [18] Feng L, Deng S H, Ruan Y Z, et al. Antenna-mode scattering component and RCS reduction. J Electron, 1996, 18(2): 189

      馮林, 鄧書輝, 阮穎錚, 等. 天線模式項散射分析與天線RCS減縮. 電子科學學刊, 1996, 18(2):189
      [19] Xia F, Research and Application of Minimum Scattering Antenna[Dissertation]. Beijing: Beihang University, 2009

      夏豐. 最小散射天線特性研究及應用[學位論文]. 北京: 北京航空航天大學, 2009
    • 加載中
    圖(11)
    計量
    • 文章訪問數:  1504
    • HTML全文瀏覽量:  1303
    • PDF下載量:  32
    • 被引次數: 0
    出版歷程
    • 收稿日期:  2019-09-15
    • 刊出日期:  2020-04-01

    目錄

      /

      返回文章
      返回