• 《工程索引》(EI)刊源期刊
    • 中文核心期刊
    • 中國科技論文統計源期刊
    • 中國科學引文數據庫來源期刊

    留言板

    尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

    姓名
    郵箱
    手機號碼
    標題
    留言內容
    驗證碼

    基于數控機床設備故障領域的命名實體識別

    王歡 朱文球 吳岳忠 何頻捷 萬爛軍

    王歡, 朱文球, 吳岳忠, 何頻捷, 萬爛軍. 基于數控機床設備故障領域的命名實體識別[J]. 工程科學學報, 2020, 42(4): 476-482. doi: 10.13374/j.issn2095-9389.2019.09.17.002
    引用本文: 王歡, 朱文球, 吳岳忠, 何頻捷, 萬爛軍. 基于數控機床設備故障領域的命名實體識別[J]. 工程科學學報, 2020, 42(4): 476-482. doi: 10.13374/j.issn2095-9389.2019.09.17.002
    WANG Huan, ZHU Wen-qiu, WU Yue-zhong, HE Pin-jie, WAN Lan-jun. Named entity recognition based on equipment and fault field of CNC machine tools[J]. Chinese Journal of Engineering, 2020, 42(4): 476-482. doi: 10.13374/j.issn2095-9389.2019.09.17.002
    Citation: WANG Huan, ZHU Wen-qiu, WU Yue-zhong, HE Pin-jie, WAN Lan-jun. Named entity recognition based on equipment and fault field of CNC machine tools[J]. Chinese Journal of Engineering, 2020, 42(4): 476-482. doi: 10.13374/j.issn2095-9389.2019.09.17.002

    基于數控機床設備故障領域的命名實體識別

    doi: 10.13374/j.issn2095-9389.2019.09.17.002
    基金項目: 國家重點研發計劃資助項目(2018YFB1700200);國家自然科學基金青年科學基金資助項目(61702177);湖南省教育廳開放平臺創新基金資助項目(17K029);智能信息感知及處理技術湖南省重點實驗室開放課題資助項目(2017KF07);湖南省重點領域研發計劃課題資助項目(2019GK2133);湖南省教育廳科學研究優秀青年資助項目(19B147)
    詳細信息
      通訊作者:

      E-mail: yuezhong.wu@163.com

    • 中圖分類號: TP391.1

    Named entity recognition based on equipment and fault field of CNC machine tools

    More Information
    • 摘要: 為了給數控機床故障的精準診斷提供保障,延長數控機床使用周期,以數控機床歷史維修記錄為研究對象,對數控機床設備故障領域的命名實體識別進行了研究。在分析歷史維修記錄中的故障描述特點后,提出了一種基于雙向長短期記憶網絡(Bidirectional long short-term memory, BLSTM)與具有回路的條件隨機場(Conditional random field with loop, L-CRF)相結合的命名實體識別方法。首先,對輸入語句進行分詞和標注,使用Word2vec中的Skip-gram模型對標注語料進行預訓練,將其生成的字向量通過詞嵌入層轉化為字向量序列;然后,將字向量序列輸入BLSTM學習長期依賴信息;最后將句子表達輸入L-CRF獲取全局最優序列。實驗結果表明,該方法明顯優于其他命名實體識別方法,為數控機床設備的智能檢修與實時診斷任務打下了堅實的基礎。

       

    • 圖  1  BLSTM模型結構

      Figure  1.  BLSTM model structure

      圖  2  L-CRF架構圖

      Figure  2.  L-CRF architecture diagram

      圖  3  L-CRF架構所形成的聯合樹

      Figure  3.  Joint tree formed by L-CRF architecture

      圖  4  BLSTM-L-CRF模型

      Figure  4.  BLSTM-L-CRF model

      表  1  句子序列標注方法

      Table  1.   Sentence sequence labeling method

      SentenceLabelingSentenceLabelingSentenceLabeling
      B-DevOI-Fau
      I-DevB-Dev
      I-DevI-Dev
      OB-Fau
      下載: 導出CSV

      表  2  Word2vec的Skip-gram模型參數表

      Table  2.   Parameter list of Skip-gram model in Word2vec

      ParameterValue
      Window size10
      Vector dimension200
      Minimum term frequency5
      Iterations100
      下載: 導出CSV

      表  3  BLSTM-L-CRF模型參數表

      Table  3.   BLSTM-L-CRF model parameter table

      Network layerParameterValue
      BLSTMLearning rate0.002
      BatchSize20
      Iterations100
      Dropout0.68
      下載: 導出CSV

      表  4  不同數據集在BLSTM-L-CRF模型中的識別結果

      Table  4.   Experiment result of BLSTM-L-CRF models in different data set

      Date setPrecision/%Recall/%F-measure/%
      People's daily corpus(1998)83.0783.4083.23
      MSRA corpus82.2380.3581.28
      Boson NLP corpus79.4580.1879.81
      CNC machine dataset86.1683.4084.76
      下載: 導出CSV

      表  5  BLSTM-L-CRF與其他模型綜合性能對比

      Table  5.   Comparison of performance of BLSTM-L-CRF and other models

      ModelPrecision/%Recall/%F-measure/%
      CRF85.4569.8776.88
      L-CRF85.9272.5479.16
      LSTM78.9077.8478.37
      BLSTM80.7179.0079.85
      CNN-LSTM83.6280.0781.81
      BLSTM-CRF81.5480.4180.97
      BLSTM-L-CRF86.1683.4084.76
      下載: 導出CSV
      中文字幕在线观看
    • [1] Zeng J D, Wang T, Jia W J, et al. A survey on sensor-cloud. J Comput Res Dev, 2017, 54(5): 925 doi: 10.7544/issn1000-1239.2017.20160492

      曾建電, 王田, 賈維嘉, 等. 傳感云研究綜述. 計算機研究與發展, 2017, 54(5):925 doi: 10.7544/issn1000-1239.2017.20160492
      [2] Wang T, Shen X W, Luo H, et al. Research progress of trusted sensor-cloud based on fog computing. J Commun, 2019, 40(3): 170 doi: 10.11959/j.issn.1000-436x.2019068

      王田, 沈雪微, 羅皓, 等. 基于霧計算的可信傳感云研究進展. 通信學報, 2019, 40(3):170 doi: 10.11959/j.issn.1000-436x.2019068
      [3] Li J Y, Zhao Y K, Xue Z E, et al. A survey of model compression for deep neural networks. Chin J Eng, 2019, 41(10): 1229

      李江昀, 趙義凱, 薛卓爾, 等. 深度神經網絡模型壓縮綜述. 工程科學學報, 2019, 41(10):1229
      [4] Bikel D M, Miller S, Schwartz R, et al. Nymble: a high-performance learning name-finder[J/OL]. arXiv preprint (1998-03-27)[2019-09-17]. https://arxiv.org/abs/cmp-lg/9803003
      [5] Berger A L, Pietra V J D, Pietra S A D. A maximum entropy approach to natural language processing. Computat Linguist, 1996, 22(1): 39
      [6] McCallum A, Li W. Early results for named entity recognition with conditional random fields, feature induction and web-enhanced lexicons // Proceedings of the Seventh Conference on Natural Language Learning at HLT-NAACL 2003-Volume 4. Edmonton, 2003: 188
      [7] Yu H K, Zhang H P, Liu Q, et al. Chinese named entity recognition based on cascading hidden Markov model. J Commun, 2006, 27(2): 87 doi: 10.3321/j.issn:1000-436X.2006.02.013

      俞鴻魁, 張華平, 劉群, 等. 基于層疊隱馬爾可夫模型的中文命名實體識別. 通信學報, 2006, 27(2):87 doi: 10.3321/j.issn:1000-436X.2006.02.013
      [8] He Y X, Luo C W, Hu B Y. Geographic entity recognition method based on CRF model and rules combination. Comput Appl Softw, 2015, 32(1): 179 doi: 10.3969/j.issn.1000-386x.2015.01.046

      何炎祥, 羅楚威, 胡彬堯. 基于CRF和規則相結合的地理命名實體識別方法. 計算機應用與軟件, 2015, 32(1):179 doi: 10.3969/j.issn.1000-386x.2015.01.046
      [9] Wang L L, Aishan W, Maihemuti M, et al. A semi-supervised approach to Uyghur named entity recognition based on CRF. J Chin Inf Process, 2018, 32(11): 16 doi: 10.3969/j.issn.1003-0077.2018.11.003

      王路路, 艾山?吾買爾, 買合木提?買買提, 等. 基于CRF和半監督學習的維吾爾文命名實體識別. 中文信息學報, 2018, 32(11):16 doi: 10.3969/j.issn.1003-0077.2018.11.003
      [10] Hochreiter S, Schmidhuber J. Long short-term memory. Neural Comput, 1997, 9(8): 1735 doi: 10.1162/neco.1997.9.8.1735
      [11] Graves A, Schmidhuber J. Framewise phoneme classification with bidirectional LSTM and other neural network architectures. Neural Netw, 2005, 18(5-6): 602 doi: 10.1016/j.neunet.2005.06.042
      [12] Yang H M, Li L, Yang R D, et al. Named entity recognition based on bidirectional long short-term memory combined with case report form. Chin J Tissue Eng Res, 2018, 22(20): 3237 doi: 10.3969/j.issn.2095-4344.0302

      楊紅梅, 李琳, 楊日東, 等. 基于雙向LSTM神經網絡電子病歷命名實體的識別模型. 中國組織工程研究, 2018, 22(20):3237 doi: 10.3969/j.issn.2095-4344.0302
      [13] Lin B Y, Xu F, Luo Z Y, et al. Multi-channel BiLSTM-CRF model for emerging named entity recognition in social media // Proceedings of the 3rd Workshop on Noisy User-generated Text. Copenhagen, 2017: 160
      [14] Bharadwaj A, Mortensen D, Dyer C, et al. Phonologically aware neural model for named entity recognition in low resource transfer settings // Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing. Austin, 2016: 1462
      [15] Li C Y, Wu Y Z, Hu F H, et al. Packaging domain-based named entity recognition with multi-layer neural networks. Neu-roQuantology, 2018, 16(6): 564
      [16] Yi S X, Yin H P, Zheng H Y. Public security event trigger identification based on Bidirectional LSTM. Chin J Eng, 2019, 41(9): 1201

      易士翔, 尹宏鵬, 鄭恒毅. 基于BiLSTM的公共安全事件觸發詞識別. 工程科學學報, 2019, 41(9):1201
      [17] Chen Q Y, Cheng G, Li D, et al. Named entity recognition for mechanical design and manufacturing area. Comput Eng Appl, 2017, 53(20): 100 doi: 10.3778/j.issn.1002-8331.1604-0231

      陳秋瑗, 程光, 李迪, 等. 機械設計領域的命名實體識別研究. 計算機工程與應用, 2017, 53(20):100 doi: 10.3778/j.issn.1002-8331.1604-0231
      [18] Zhao X N, Feng Z P. Fault diagnosis of rolling element bearing based on ensemble empirical mode decomposition and cross energy operator. Chin J Eng, 2015, 37(S1): 65

      趙曉寧, 馮志鵬. 基于集合經驗模式分解和交叉能量算子的滾動軸承故障診斷. 工程科學學報, 2015, 37(S1):65
      [19] Zhang D, Feng Z P. Fault diagnosis of rolling bearings based on variational mode decomposition and calculus enhanced energy operator. Chin J Eng, 2016, 38(9): 1327

      張東, 馮志鵬. 基于變分模式分解和微積分增強能量算子的滾動軸承故障診斷. 工程科學學報, 2016, 38(9):1327
      [20] Zhao W H, Zhang X, Lv D, et al. Technical status and strategies for domestic CNC machine tools. Aeron Manuf Technol, 2016, 59(9): 16

      趙萬華, 張星, 呂盾, 等. 國產數控機床的技術現狀與對策. 航空制造技術, 2016, 59(9):16
      [21] Mikolov T, Sutskever I, Chen K, et al. Distributed representations of words and phrases and their compositionality // Advances in Neural Information Processing Systems 26(NIPS 2013). Lake Tahoe, 2013: 3111
      [22] Lafferty J, McCallum A, Pereira F C N. Conditional random fields: Probabilistic models for segmenting and labeling sequence data // Proceedings of the 18th International Conference on Machine Learning 2001. Williamstown, 2001: 282
      [23] Yuan S, Tang J, Gu X T. A summary of scholars' portrait techniques in the open internet. J Comput Res Dev, 2018, 55(9): 1903 doi: 10.7544/issn1000-1239.2018.20180139

      袁莎, 唐杰, 顧曉韜. 開放互聯網中的學者畫像技術綜述. 計算機研究與發展, 2018, 55(9):1903 doi: 10.7544/issn1000-1239.2018.20180139
      [24] Zhu W Q, Liu Q. Conditional random fields with loop and its inference algorithm. Comput Eng Appl, 2008, 44(28): 180 doi: 10.3778/j.issn.1002-8331.2008.28.060

      朱文球, 劉強. 基于條件隨機域的上下文人類動作識別. 計算機工程與應用, 2008, 44(28):180 doi: 10.3778/j.issn.1002-8331.2008.28.060
      [25] Lai S W. Word and document embeddings based on neural network approaches[J/OL]. arXiv preprint (2016-11-18)[2019-09-17]. https://arxiv.org/abs/1611.05962
    • 加載中
    圖(4) / 表(5)
    計量
    • 文章訪問數:  2124
    • HTML全文瀏覽量:  1920
    • PDF下載量:  78
    • 被引次數: 0
    出版歷程
    • 收稿日期:  2019-09-17
    • 刊出日期:  2020-04-01

    目錄

      /

      返回文章
      返回