• 《工程索引》(EI)刊源期刊
    • 中文核心期刊
    • 中國科技論文統計源期刊
    • 中國科學引文數據庫來源期刊

    留言板

    尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

    姓名
    郵箱
    手機號碼
    標題
    留言內容
    驗證碼

    高爐內鐵?焦界面的滲碳潤濕行為研究

    湛文龍 朱浩斌 何志軍 孫崇 余盈昌 龐清海 張軍紅

    湛文龍, 朱浩斌, 何志軍, 孫崇, 余盈昌, 龐清海, 張軍紅. 高爐內鐵?焦界面的滲碳潤濕行為研究[J]. 工程科學學報, 2020, 42(5): 595-601. doi: 10.13374/j.issn2095-9389.2019.09.18.003
    引用本文: 湛文龍, 朱浩斌, 何志軍, 孫崇, 余盈昌, 龐清海, 張軍紅. 高爐內鐵?焦界面的滲碳潤濕行為研究[J]. 工程科學學報, 2020, 42(5): 595-601. doi: 10.13374/j.issn2095-9389.2019.09.18.003
    ZHAN Wen-long, ZHU Hao-bin, HE Zhi-jun, SUN Chong, YU Ying-chang, PANG Qing-hai, ZHANG Jun-hong. Interface wetting behavior between iron and coke during the carbon dissolution process in a blast furnace[J]. Chinese Journal of Engineering, 2020, 42(5): 595-601. doi: 10.13374/j.issn2095-9389.2019.09.18.003
    Citation: ZHAN Wen-long, ZHU Hao-bin, HE Zhi-jun, SUN Chong, YU Ying-chang, PANG Qing-hai, ZHANG Jun-hong. Interface wetting behavior between iron and coke during the carbon dissolution process in a blast furnace[J]. Chinese Journal of Engineering, 2020, 42(5): 595-601. doi: 10.13374/j.issn2095-9389.2019.09.18.003

    高爐內鐵?焦界面的滲碳潤濕行為研究

    doi: 10.13374/j.issn2095-9389.2019.09.18.003
    基金項目: 國家自然科學基金資助項目(51604148,51874171,51974154);遼寧科技大學優秀人才資助項目(2019RC11)
    詳細信息
      通訊作者:

      E-mail:hzhj2002@126.com

    • 中圖分類號: TF526.1

    Interface wetting behavior between iron and coke during the carbon dissolution process in a blast furnace

    More Information
    • 摘要: 高爐內鐵水滲碳過程是影響冶煉效率及未飽和鐵水對爐缸爐襯侵蝕的重要因素。本文通過高溫真空潤濕性測試裝置模擬了高爐爐缸區的鐵水滲碳反應,分析了不同碳質量分數(3.8%、4.3%、4.8%)的Fe?C熔體與質量分數為99.9%的石墨基體在高溫下界面間的潤濕反應,同時利用掃描電鏡(SEM)和能譜儀(EDS)研究了滲碳界面的微觀形貌及滲碳距離。結果表明:界面接觸角隨著Fe?C熔體中碳含量的增加而變大;熔化過程中,接觸角隨著反應時間延長而減小,并最終趨于穩定;4.8%碳質量分數的Fe?C熔體中由于含碳量已至飽和,處于不潤濕狀態。掃描電鏡分析顯示,Fe?C熔體與石墨基體的接觸界面形成了“球帽狀”凹陷,凹陷半徑與體積隨碳含量的增加而減小。能譜線掃描分析顯示,隨著Fe?C熔體中初始碳含量的增加,石墨基體中的碳素溶解量減少,滲碳效果變差,良好的潤濕性有利于碳的傳質。通過計算表面能發現,石墨基體中碳素溶解進入Fe?C熔體后,有效減小了兩者之間的表面能,使得表面張力減小,接觸角在熔化期間遞減。

       

    • 圖  1  超高溫真空潤濕性測試系統

      Figure  1.  Ultra-high temperature vacuum wetting test system

      圖  2  Fe?3.8%C熔體的滲碳過程。(a)1100 ℃;(b)1200 ℃;(c)1300 ℃;(d)1400 ℃

      Figure  2.  Carburization process of Fe?C sample with 3.8% carbon content: (a) 1100 ℃; (b) 1200 ℃; (c) 1300 ℃; (d) 1400 ℃

      圖  3  Fe?4.3%C熔體的滲碳過程。(a)1100 ℃;(b)1200 ℃;(c)1300 ℃;(d)1400 ℃

      Figure  3.  Carburization process of Fe?C sample with 4.3% carbon content: (a) 1100 ℃; (b) 1200 ℃; (c) 1300 ℃; (d) 1400 ℃

      圖  4  Fe?4.8%C熔體的滲碳過程。(a)1100 ℃;(b)1200 ℃;(c)1300 ℃;(d)1400 ℃

      Figure  4.  Carburization process of Fe?C sample with 4.8% carbon content: (a) 1100 ℃; (b) 1200 ℃; (c) 1300 ℃; (d) 1400 ℃

      圖  5  Fe?C熔體接觸角在升溫過程中的變化規律

      Figure  5.  Variation of contact angle of Fe?C sample with temperature rising

      圖  6  切割前后的Fe?C熔體形狀。(a) 切割前;(b) 切割后

      Figure  6.  Fe?C sample shape before and after cutting: (a) before cutting; (b) after cutting

      圖  7  掃描電鏡下不同Fe?C熔體的微觀形貌。(a) Fe?3.8%C 熔體;(b) Fe?4.3%C 熔體;(c) Fe?4.8%C熔體

      Figure  7.  Morphology of different Fe?C samples using SEM: (a) Fe?3.8%C melt; (b) Fe?4.3%C melt (c) Fe?4.8%C melt

      圖  8  球帽形狀示意圖

      Figure  8.  Spherical cap shape

      圖  9  能譜線掃描的元素分析結果。(a) Fe?3.8%C 熔體;(b) Fe?4.3%C熔體;(c) Fe?4.8%C 熔體

      Figure  9.  Element analysis results by EDS line scan: (a) Fe?3.8%C melt; (b) Fe?4.3%C melt; (c) Fe?4.8%C melt

      表  1  球帽尺寸計算結果

      Table  1.   Calculation results of spherical cap size

      Mass fraction of initial carbon/%R/mmH/μmV/mm3
      3.82.270338.72.76
      4.32.193311.12.36
      4.82.040223.31.46
      下載: 導出CSV

      表  2  Fe?C熔體與石墨基體的初始接觸角及表面能

      Table  2.   Initial contact angle and surface energy of Fe?C melts and graphite substrate

      Mass fraction of initial carbon/%Initial contact angle/
      (°)
      Surface energy/
      (J·m?2)
      3.8118.31.336
      4.3122.71.386
      4.8129.91.463
      下載: 導出CSV
      中文字幕在线观看
    • [1] Chang Z Y, Wang P, Zhang J L, et al. Effect of CO2 and H2O on gasification dissolution and deep reaction of coke. Int J Miner Metall Mater, 2018, 25(12): 1402 doi: 10.1007/s12613-018-1694-4
      [2] Wang X L. Metallurgy of Iron and Steel (Ironmaking). 3rd Ed. Beijing: Metallurgical Industry Press, 2013

      王筱留. 鋼鐵冶金學(煉鐵部分). 3版. 北京: 冶金工業出版社, 2013
      [3] Guo W T, Xue Q G, Ling C, et al. Influence of pore structure features on the high temperature tensile strength of coke. Chin J Eng, 2016, 38(7): 930

      郭文濤, 薛慶國, 凌超, 等. 孔隙結構特征對焦炭高溫抗拉強度的影響. 工程科學學報, 2016, 38(7):930
      [4] Natsui S, Kikuchi T, Suzuki R O, et al. Characterization of liquid trickle flow in poor-wetting packed bed. ISIJ Int, 2015, 55(6): 1259 doi: 10.2355/isijinternational.55.1259
      [5] Ichikawa K, Kashihara Y, Oyama N, et al. Evaluating effect of coke layer thickness on permeability by pressure drop estimation model. ISIJ Int, 2017, 57(2): 254 doi: 10.2355/isijinternational.ISIJINT-2016-459
      [6] Geleta D D, Lee J. Effects of particle diameter and coke layer thickness on solid flow and stress distribution in BF by 3D discrete element method. Metall Mater Trans B, 2018, 49(6): 3594 doi: 10.1007/s11663-018-1368-7
      [7] Sun M M, Zhang J L, Li K J, et al. Dissolution behaviors of various carbonaceous materials in liquid iron: interaction between graphite and iron. JOM, 2019, 71(12): 4305 doi: 10.1007/s11837-019-03664-9
      [8] Mansuri I A, Khanna R, Rajarao R, et al. Recycling waste CDs as a carbon resource: dissolution of carbon into molten iron at 1550 ℃. ISIJ Int, 2013, 53(12): 2259 doi: 10.2355/isijinternational.53.2259
      [9] Zhang Z J, Zhang J L, Jiao K X, et al. Research progress of iron carburization in blast furnace//6th International Symposium on High–Temperature Metallurgical Processing, Orlando, 2015: 627
      [10] Hua F B, Zhang W, Zhu L, et al. Carburizing behavior of molten iron in coke bed. J Iron Steel Res, 2019, 31(7): 612

      華福波, 張偉, 朱雷, 等. 焦炭床內鐵水滲碳行為. 鋼鐵研究學報, 2019, 31(7):612
      [11] Hua F B. Zhang W, Xue Z L, et al. Kinetic experiment of dissolving coke in molten iron. J Iron Steel Res, 2018, 30(6): 427

      華福波, 張偉, 薛正良, 等. 焦炭在鐵水中溶解的動力學實驗. 鋼鐵研究學報, 2018, 30(6):427
      [12] Deng Y, Zhang J L, Jiao K X. Economical and efficient protection for blast furnace hearth. ISIJ Int, 2018, 58(7): 1198 doi: 10.2355/isijinternational.ISIJINT-2018-005
      [13] Nguyen C S, Ohno K, Maeda T, et al. Effect of carbon dissolution reaction on wetting behaviour of molten Fe?C alloy on graphite substrate in the initial contact period. ISIJ Int, 2017, 57(9): 1491 doi: 10.2355/isijinternational.ISIJINT-2017-054
      [14] Tang K, Lü X W, Wu S S, et al. Measurement for contact angle of iron ore particles and water. ISIJ Int, 2018, 58(3): 379 doi: 10.2355/isijinternational.ISIJINT-2017-424
      [15] Cheng L M, Zhang L F, Shen P. Fundamentals of interfacial wettability in ironmaking and steelmaking. Chin J Eng, 2018, 40(12): 1434

      程禮梅, 張立峰, 沈平. 鋼鐵冶金過程中的界面潤濕性的基礎. 工程科學學報, 2018, 40(12):1434
      [16] Frenznick S, Swaminathan S, Stratmann M, et al. A novel approach to determine high temperature wettability and interfacial reactions in liquid metal/solid interface. J Mater Sci, 2010, 45(8): 2106 doi: 10.1007/s10853-009-4147-7
      [17] Tandjaoui A, Cherif M, Carroz L, et al. Investigation of liquid oxide interactions with refractory substrates via sessile drop method. J Mater Sci, 2016, 51(4): 1701 doi: 10.1007/s10853-015-9504-0
      [18] Mao W J, Noji T, Teshima K, et al. Wettability of molten aluminum-silicon alloys on graphite and surface tension of those alloys at 1273 K (1000 ℃). Metall Mater Trans A, 2016, 47(6): 3201 doi: 10.1007/s11661-016-3460-4
      [19] Yin D X, Ma P S, Xia S Q. Progress on methods for measuring surface tension of liquids. Bull Sci Technol, 2007, 23(3): 424 doi: 10.3969/j.issn.1001-7119.2007.03.025

      尹東霞, 馬沛生, 夏淑倩. 液體表面張力測定方法的研究進展. 科技通報, 2007, 23(3):424 doi: 10.3969/j.issn.1001-7119.2007.03.025
      [20] Eustathopoulos N, Nicholas M G, Drevet B. Wettability at High Temperatures. Oxford: Pergamon Press, 1999
      [21] Lee J, Morita K. Dynamic interfacial phenomena between gas, liquid iron and solid CaO during desulfurization. ISIJ Int, 2004, 44(2): 235 doi: 10.2355/isijinternational.44.235
      [22] Makkonen L. Young’s equation revisited. J. Phys Condens Matter, 2016, 28(13): 135001 doi: 10.1088/0953-8984/28/13/135001
      [23] Liu Y M, Shi J Y, Lu Q Q, et al. Research progress on calculation of solid surface tension based on Young's equation. Mater Rep, 2013, 27(6): 123 doi: 10.3969/j.issn.1005-023X.2013.06.032

      劉永明, 施建宇, 鹿芹芹, 等. 基于楊氏方程的固體表面能計算研究進展. 材料導報, 2013, 27(6):123 doi: 10.3969/j.issn.1005-023X.2013.06.032
      [24] Shinozaki N, Satoh N, Shinozaki H, et al. Measurement of interfacial free energy between carbon saturated molten iron and graphite based on the sign rule. J Jpn Inst Met, 2006, 70(12): 950 doi: 10.2320/jinstmet.70.950
      [25] Nguyen C S, Ohno K, Maeda T, et al. Role of Al2O3 in interfacial morphology and reactive wetting behaviour between carbon-unsaturated liquid iron and simulant coke substrate. ISIJ Int, 2016, 56(8): 1325 doi: 10.2355/isijinternational.ISIJINT-2015-739
    • 加載中
    圖(9) / 表(2)
    計量
    • 文章訪問數:  3058
    • HTML全文瀏覽量:  1223
    • PDF下載量:  38
    • 被引次數: 0
    出版歷程
    • 收稿日期:  2019-09-18
    • 刊出日期:  2020-05-01

    目錄

      /

      返回文章
      返回