• 《工程索引》(EI)刊源期刊
    • 中文核心期刊
    • 中國科技論文統計源期刊
    • 中國科學引文數據庫來源期刊

    留言板

    尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

    姓名
    郵箱
    手機號碼
    標題
    留言內容
    驗證碼

    柔性隔離層下多漏斗散體礦巖力鏈演化特征的離散元模擬

    陳慶發 王少平 秦世康

    陳慶發, 王少平, 秦世康. 柔性隔離層下多漏斗散體礦巖力鏈演化特征的離散元模擬[J]. 工程科學學報, 2020, 42(9): 1119-1129. doi: 10.13374/j.issn2095-9389.2019.10.03.001
    引用本文: 陳慶發, 王少平, 秦世康. 柔性隔離層下多漏斗散體礦巖力鏈演化特征的離散元模擬[J]. 工程科學學報, 2020, 42(9): 1119-1129. doi: 10.13374/j.issn2095-9389.2019.10.03.001
    CHEN Qing-fa, WANG Shao-ping, QIN Shi-kang. Discrete element simulation for evolution characteristics of multi-funnel mineral-rock force chain under flexible isolation layer[J]. Chinese Journal of Engineering, 2020, 42(9): 1119-1129. doi: 10.13374/j.issn2095-9389.2019.10.03.001
    Citation: CHEN Qing-fa, WANG Shao-ping, QIN Shi-kang. Discrete element simulation for evolution characteristics of multi-funnel mineral-rock force chain under flexible isolation layer[J]. Chinese Journal of Engineering, 2020, 42(9): 1119-1129. doi: 10.13374/j.issn2095-9389.2019.10.03.001

    柔性隔離層下多漏斗散體礦巖力鏈演化特征的離散元模擬

    doi: 10.13374/j.issn2095-9389.2019.10.03.001
    基金項目: 國家自然科學基金資助項目(51964003,51464005)
    詳細信息
      通訊作者:

      E-mail: chqf98121@163.com

    • 中圖分類號: TD801

    Discrete element simulation for evolution characteristics of multi-funnel mineral-rock force chain under flexible isolation layer

    More Information
    • 摘要: 為進一步揭示柔性隔離層下散體介質流動過程的內部作用機理,基于離散元軟件PFC開展了柔性隔離層下散體介質流力鏈演化特征的數值試驗研究。結合接觸力學及統計力學相關知識,對多漏斗放礦過程中散體介質體系內力鏈長度、數量、強度、方向和準直系數等的演化特征進行了量化研究。研究發現:多漏斗放礦過程中,強接觸及力鏈接觸占比均比較穩定,其中強接觸占比穩定在33%左右,力鏈接觸占比穩定在16%左右,上下波動幅度均不超過2%;力鏈總數隨著放礦次數的增加不斷波動減少,并在放礦后期穩定在790條左右;不同放礦次數下力鏈長度的概率分布幾乎一致,均隨著力鏈長度的增加呈指數形式遞減;力鏈強度的概率分布隨著放礦次數的增加先呈指數形式上升再呈指數形式下降,并在0.7$\bar F$$\bar F$為平均接觸力)處出現一峰值;放礦初始階段,力鏈主要沿鉛垂方向分布,力鏈方向分布形態近似花生狀;此后隨著礦石顆粒的持續放出,散體介質體系內部局部應力集中現象明顯,力鏈分布主方向由1個演變為4個(鉛垂方向、水平方向及與水平方向呈±60°夾角方向);力鏈準直系數隨著放礦次數的增加呈指數形式增長并逐漸保持穩定。

       

    • 圖  1  數值試驗中的顆粒模型

      Figure  1.  Model of particles in the test

      圖  2  力鏈宏觀分布特征

      Figure  2.  Macroscopic distribution characteristics of the force chain

      圖  3  多漏斗放礦過程強接觸與力鏈接觸占比

      Figure  3.  Proportion of strong contact and force chain contact in multi-funnel ore drawing process

      圖  4  多漏斗放礦過程散體介質體系內力鏈數目變化規律

      Figure  4.  Variation law of the number of force chains in the granular medium system during multi-funnel ore drawing

      圖  5  多漏斗放礦過程力鏈長度概率分布

      Figure  5.  Probability distribution of the force chain length in the multi-funnel ore drawing process

      圖  6  不同長度力鏈的概率分布

      Figure  6.  Probability distribution of force chains of different lengths

      圖  7  多漏斗放礦過程力鏈強度演化規律

      Figure  7.  Evolution law of the force chain strength in the multi-funnel ore drawing process

      圖  8  多漏斗放礦力鏈強度的概率分布

      Figure  8.  Probability distribution of the force chain strength in the multi-funnel ore drawing process

      圖  9  多漏斗放礦過程力鏈方向演化規律

      Figure  9.  Evolution law of the force chain direction in the multi-funnel ore drawing process

      圖  10  力鏈準直系數變化規律

      Figure  10.  Change law of collimation coefficient of the force chain

      表  1  墻體及初始礦石顆粒力學參數

      Table  1.   Mechanical parameters of walls and initial ore particles

      WallsInitial ore particles
      Shear stiffness /
      (N·m?1)
      Normal stiffness /
      (N·m?1)
      Friction coefficientNormal stiffness /
      (N·m?1)
      Shear stiffness /
      (N·m?1)
      Friction coefficientOre particle density /
      (kg·m?3)
      Ore particle radius/m
      1×1071×1070.55×1075×1070.328000.008
      下載: 導出CSV

      表  2  隔離層相關參數

      Table  2.   Parameters related to the isolation layer

      Shear stiffness /
      (N·m?1)
      Normal stiffness /
      (N·m?1)
      Parallel bonding
      normal stiffness/
      (N·m?1)
      Parallel bonding
      shear stiffness /
      (N·m?1)
      Ore particle density /
      (kg·m?3)
      Friction coefficientElastic modulus of parallel bond /PaOre particle radius /m
      1×1071×1071×1061×10620000.45×1070.0015
      下載: 導出CSV

      表  3  礦石顆粒參數

      Table  3.   Parameters of ore particles

      Shear stiffness /
      (N·m?1)
      Normal stiffness /
      (N·m?1)
      Friction coefficientLinear friction coefficient
      against rolling
      Ore particle density /
      (kg·m?3)
      Ore particle radius /
      m
      5×1075×1070.50.528000.008
      下載: 導出CSV

      表  4  多漏斗放礦過程力鏈方向分布的擬合結果

      Table  4.   Fitting results of the force chain direction distribution in the multi-funnel ore drawing process

      Ore drawing timesf0anθn
      11.000.3094.58
      21.000.3091.48
      31.000.3687.35
      41.000.4292.90
      51.000.4088.42
      61.000.4290.59
      71.000.3888.20
      81.000.3582.32
      91.000.3687.91
      101.000.2795.02
      111.000.4679.60
      121.000.4979.55
      下載: 導出CSV
      中文字幕在线观看
    • [1] Littlewood D. Corporate social responsibility, mining and sustainable development in Namibia: critical reflections through a relational lens. <italic>Dev South Afr</italic>, 2015, 32(2): 240 doi: 10.1080/0376835X.2014.984833
      [2] Soni A K, Wolkersdorfer C. Mine water: policy perspective for improving water management in the mining environment with respect to developing economies. <italic>Int J Min Reclam Environ</italic>, 2016, 30(2): 115 doi: 10.1080/17480930.2015.1011372
      [3] Chen Q F, Su J H. Synergetic mining and itstechnology system. <italic>J Cent South Univ Sci Technol</italic>, 2013, 44(2): 732

      陳慶發, 蘇家紅. 協同開采及其技術體系. 中南大學學報: 自然科學版, 2013, 44(2):732
      [4] Chen Q F, Wu Z X. A Large Number of Ore Drawing Synchronous Filling No-top-pillar Shrinkage Stoping Method: China Patent, 201010181971.2. 2010-10-20

      陳慶發, 吳仲雄. 大量放礦同步充填無頂柱留礦采礦方法: 中國專利, 201010181971.2. 2010-10-20
      [5] Chen Q F, Qin S K, Chen Q L. Numerical simulation of ore particle flow behaviour through a single drawpoint under the influence of a flexible barrier. <italic>Geofluids</italic>, 2019: 6127174
      [6] Chen Q F, Qin S K, Chen Q L. Stress analysis of ore particle flow behaviour under the influence of a flexible barrier. <italic>Arab J Geosci</italic>, 2019, 12(15): 472 doi: 10.1007/s12517-019-4658-8
      [7] Chen Q F, Zhao F Y, Chen Q L, et al. Orthogonal simulation experiment for flow characteristics of ore in ore drawing and influencing factors in a single funnel under a flexible isolation layer. <italic>JOM</italic>, 2017, 69(12): 2485 doi: 10.1007/s11837-017-2409-4
      [8] Chen Q F, Chen Q L, Wang Y D, et al. Study of the movement law and tensile force character of flexible isolation layer interface in multiple funnels. <italic>J Basic Sci Eng</italic>, 2018, 26(5): 1101

      陳慶發, 陳青林, 王玉丁, 等. 多漏斗放礦柔性隔離層界面移動規律及其拉力特性. 應用基礎與工程科學學報, 2018, 26(5):1101
      [9] Chen Q F, Chen Q L, Zhong Y, et al. Orthogonal simulation test for flowing characteristics of ore-rock and influence factor in ore drawing from multiple funnels under flexible isolation layer. <italic>Sci Sin Tech</italic>, 2017, 47(9): 923 doi: 10.1360/N092016-00324

      陳慶發, 陳青林, 鐘毓, 等. 柔性隔離層下多漏斗礦巖流動特性及影響因素正交模擬試驗. 中國科學: 技術科學, 2017, 47(9):923 doi: 10.1360/N092016-00324
      [10] Chen Q F, Chen Q L, Zhong J Y, et al. Flow pattern of granular ore rock in a single funnel under a flexible isolation layer. <italic>Chin J Eng</italic>, 2016, 38(7): 893

      陳慶發, 陳青林, 仲建宇, 等. 柔性隔離層下單漏斗散體礦巖流動規律. 工程科學學報, 2016, 38(7):893
      [11] Chen Q F, Chen Q L, Zhong J Y, et al. Evolution law of interface morphology of flexible isolation layer under ore drawing from single funnel. <italic>Chin J Nonferrous Met</italic>, 2016, 26(6): 1332

      陳慶發, 陳青林, 仲建宇, 等. 單漏斗放礦柔性隔離層界面形態演化規律. 中國有色金屬學報, 2016, 26(6):1332
      [12] Chen Q F, Zhao F Y, Chen Q L, et al. Mechanical properties analysis for a flexible isolation layer material in multiple funnels synchronous ore drawing based on an indoor model experiment. <italic>Eng Mech</italic>, 2018, 35(11): 240 doi: 10.6052/j.issn.1000-4750.2017.08.0606

      陳慶發, 趙富裕, 陳青林, 等. 基于室內模型試驗的多漏斗同步放礦柔性隔離層材料受力特性分析. 工程力學, 2018, 35(11):240 doi: 10.6052/j.issn.1000-4750.2017.08.0606
      [13] Tordesillas A, Shi J Y, Muhlhaus H B. Noncoaxiality and force chain evolution. <italic>Int J Eng Sci</italic>, 2009, 47(11-12): 1386 doi: 10.1016/j.ijengsci.2008.12.011
      [14] Hunt G W, Tordesillas A, Green S C, et al. Force-chain buckling in granular media: a structural mechanics perspective. <italic>Philos Trans R Soc A</italic>:<italic>Math Phys Eng Sci</italic>, 2010, 368(1910): 249 doi: 10.1098/rsta.2009.0180
      [15] Socolar J E S, Schaeffer D G, Claudin P. Directed force chain networks and stress response in static granular materials. <italic>Eur Phys J E</italic>, 2002, 7(4): 353 doi: 10.1140/epje/i2002-10011-7
      [16] Estep J, Dufek J. Substrate effects from force chain dynamics in dense granular flows. <italic>J Geophys Res Earth Surf</italic>, 2012, 117(F1): 1028
      [17] Chen F X, Zhuang Q, Wang R L, et al. Damage point prediction of a force chain based on the digital image correlation method. <italic>Appl Opt</italic>, 2017, 56(3): 636 doi: 10.1364/AO.56.000636
      [18] Hou S Q, Wang W, Wang Z Y, et al. Force chain characteristics and effects of a dense granular flow system in a third body interface during the shear dilatancy process. <italic>J Appl Mech Tech Phys</italic>, 2018, 59(1): 153 doi: 10.1134/S0021894418010194
      [19] Tordesillas A. Force chain buckling, unjamming transitions and shear banding in dense granular assemblies. <italic>Philos Mag</italic>, 2007, 87(32): 4987 doi: 10.1080/14786430701594848
      [20] Sun Q C, Jin F, Liu J G, et al. Understanding force chains in dense granular materials. <italic>Int J Mod Phys B</italic>, 2010, 24(29): 5743 doi: 10.1142/S0217979210055780
      [21] Tordesillas A, Steer C A H, Walker D M. Force chain and contact cycle evolution in a dense granular material under shallow penetration. <italic>Nonlin Processes Geophys</italic>, 2014, 21(2): 505 doi: 10.5194/npg-21-505-2014
      [22] Zhang W, Zhou J, Zhang X J, et al. Quantitative investigation into the relation between force chains and stress transmission during high-velocity compaction of powder. <italic>J Korean Phys Soc</italic>, 2019, 74(7): 660 doi: 10.3938/jkps.74.660
      [23] Zhang L R, Nguyen N G H, Lambert S, et al. The role of force chains in granular materials: from statics to dynamics. <italic>Eur J Environ Civil Eng</italic>, 2017, 21(7-8): 874 doi: 10.1080/19648189.2016.1194332
      [24] Xu R, Liu E L. Analysis on evolution of force chain and contact network of non-cohesive soil. <italic>Key Eng Mater</italic>, 2019, 803: 253 doi: 10.4028/www.scientific.net/KEM.803.253
      [25] Xin H L, Sun Q C, Liu J G, et al. Evolution of force chains in a granular assembly based on indentation test. Rock Soil Mech, 2009, 30(Suppl l): 88

      辛海麗, 孫其誠, 劉建國, 等. 剛性塊體壓入顆粒體系時的受力及力鏈演變. 巖土力學, 2009, 30(增刊1): 88
      [26] Fu L L, Zhou S H, Tian Z Y, et al. Force chain evolution in granular materials during biaxial compression. <italic>Rock Soil Mech</italic>, 2019, 40(6): 2427

      付龍龍, 周順華, 田志堯, 等. 雙軸壓縮條件下顆粒材料中力鏈的演化. 巖土力學, 2019, 40(6):2427
      [27] Zhang W, Zhou J, Yu S W, et al. Investigation on contact force and force chain of granular matter in biaxial compression. <italic>Chin J Appl Mech</italic>, 2018, 35(3): 530

      張煒, 周劍, 于世偉, 等. 雙軸壓縮下顆粒物質接觸力與力鏈特性研究. 應用力學學報, 2018, 35(3):530
      [28] Rothenburg L, Bathurst R J. Analytical study of induced anisotropy in idealized granular materials. <italic>Géotechnique</italic>, 1989, 39(4): 601 doi: 10.1680/geot.1989.39.4.601
    • 加載中
    圖(10) / 表(4)
    計量
    • 文章訪問數:  1952
    • HTML全文瀏覽量:  714
    • PDF下載量:  37
    • 被引次數: 0
    出版歷程
    • 收稿日期:  2019-10-03
    • 刊出日期:  2020-09-20

    目錄

      /

      返回文章
      返回