• 《工程索引》(EI)刊源期刊
    • 中文核心期刊
    • 中國科技論文統計源期刊
    • 中國科學引文數據庫來源期刊

    留言板

    尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

    姓名
    郵箱
    手機號碼
    標題
    留言內容
    驗證碼

    基于雙齒面傳動誤差的側隙連續測量與預測

    王光建 周磊 鄒帥東

    王光建, 周磊, 鄒帥東. 基于雙齒面傳動誤差的側隙連續測量與預測[J]. 工程科學學報, 2020, 42(8): 1055-1064. doi: 10.13374/j.issn2095-9389.2019.10.18.004
    引用本文: 王光建, 周磊, 鄒帥東. 基于雙齒面傳動誤差的側隙連續測量與預測[J]. 工程科學學報, 2020, 42(8): 1055-1064. doi: 10.13374/j.issn2095-9389.2019.10.18.004
    WANG Guang-jian, ZHOU Lei, ZOU Shuai-dong. Measurement and prediction of backlash based on two-sided transmission error[J]. Chinese Journal of Engineering, 2020, 42(8): 1055-1064. doi: 10.13374/j.issn2095-9389.2019.10.18.004
    Citation: WANG Guang-jian, ZHOU Lei, ZOU Shuai-dong. Measurement and prediction of backlash based on two-sided transmission error[J]. Chinese Journal of Engineering, 2020, 42(8): 1055-1064. doi: 10.13374/j.issn2095-9389.2019.10.18.004

    基于雙齒面傳動誤差的側隙連續測量與預測

    doi: 10.13374/j.issn2095-9389.2019.10.18.004
    基金項目: 國家自然科學基金資助項目(51275538);上海市空間飛行器機構重點實驗室開放課題(SM2014D101)
    詳細信息
      通訊作者:

      E-mail:gjwang@cqu.edu.cn

    • 中圖分類號: TH132.4

    Measurement and prediction of backlash based on two-sided transmission error

    More Information
    • 摘要: 提出了基于雙偏心誤差齒輪副的驅動齒面與齒背面(雙齒面)無負載傳動誤差計算模型,建立與時變側隙計算公式的等價關系,從理論上證明了基于雙齒面傳動誤差的側隙測量方法。通過實驗方法測量不同負載力矩、不同初始嚙合面的雙面傳動誤差并獲得相應載荷下的初始回差。基于雙齒面傳動誤差實驗曲線,實現了對齒輪副整個大周期側隙的連續測量與預測。結果表明,連續側隙曲線與機械滯后回差法測量結果吻合良好,而側隙預測較好地反應了側隙值變化范圍和變化趨勢。同時,側隙連續測量方法及側隙預測均證明了理論模型的正確性,提高了側隙測量效率并獲得了更全面的側隙數據,對齒輪傳動的非線性研究、消隙控制以及齒輪精度研究等均具有指導意義和參考價值。

       

    • 圖  1  主動輪偏心誤差下嚙合線增量計算模型。(a)嚙合齒面為驅動齒面;(b)嚙合齒面為齒背面

      Figure  1.  Engagement increment calculation model with eccentric error of pinion: (a) drive-side meshing; (b) back-side meshing

      圖  2  從動輪偏心誤差下嚙合線增量計算模型。(a)嚙合齒面為驅動齒面;(b)嚙合齒面為齒背面

      Figure  2.  Engagement increment calculation model with eccentric error of driven gear: (a) drive-side meshing; (b) back-side meshing

      圖  3  傳動誤差及側隙測量實驗裝置圖

      Figure  3.  Experimental device for transmission error and backlash measurement

      圖  4  驅動齒面傳動誤差測量起始位置示意圖。(a)初始接觸齒面為驅動齒面;(b)初始接觸齒面為齒背面

      Figure  4.  Schematic of the initial position of the drive-side transmission error measurement: (a) drive-side contact in initial position; (b) back-side contact in initial position

      圖  5  齒背面傳動誤差測量起始位置示意圖。(a)初始接觸齒面為驅動齒面;(b)初始接觸齒面為齒背面

      Figure  5.  Schematic of the initial position of the back-side transmission error measurement: (a) drive-side contact in initial position; (b) back-side contact in initial position

      圖  6  驅動齒面傳動誤差測量且初始時刻驅動齒面接觸。(a)傳動誤差對比曲線;(b)各負載與其初始回差對比

      Figure  6.  Drive-side transmission error measurement with drive-side contact at initial position: (a) comparison of transmission error curves; (b) comparison of each load torque with its corresponding hysteresis

      圖  7  驅動齒面傳動誤差測量且初始時刻齒背面接觸。(a)傳動誤差對比曲線;(b)各負載與其初始回差對比

      Figure  7.  Drive-side transmission error measurement with back-side contact at initial position: (a) comparison of transmission error curves; (b) comparison of each load torque with its corresponding hysteresis

      圖  8  齒背面傳動誤差測量且初始時刻驅動齒面接觸。(a)傳動誤差對比曲線;(b)各負載與其初始回差對比

      Figure  8.  Back-side transmission error measurement with drive-side contact at initial position: (a) comparison of transmission error curves; (b) comparison of each load torque with its corresponding hysteresis

      圖  9  齒背面傳動誤差測量且初始時刻齒背面接觸。(a)傳動誤差對比曲線;(b)各負載與其初始回差對比

      Figure  9.  Back-side transmission error measurement with back-side contact at initial position: (a) comparison of transmission error curves; (b) comparison of each load torque with its corresponding hysteresis.

      圖  10  雙面傳動誤差與側隙連續曲線

      Figure  10.  Two-sided transmission error and continuous backlash curve

      圖  11  齒背面傳動誤差實驗及擬合曲線

      Figure  11.  Experimental and fitting curve of back-side transmission error

      圖  12  側隙預測曲線

      Figure  12.  Predicted backlash curve

      圖  13  機械滯后回差法測量原理

      Figure  13.  Measurement principle of mechanical return backlash method

      圖  14  三種側隙測量方法對比

      Figure  14.  Comparison of three backlash measurement methods

      表  1  齒輪副基本參數

      Table  1.   Basic parameters of gear pair

      System parametersValue
      Tooth number of driving gear45
      Tooth number of driven gear80
      Module/mm2
      Pressure angle/(°)20
      Tooth width/mm20
      Addendum circle diameter of driving gear/mm94
      Dedendum circle diameter of driving gear/mm85
      Addendum circle diameter of driven gear/mm164
      Dedendum circle diameter of driven gear/mm155
      Driving speed/(r·min?1)10
      Loading torque/(N?m)0
      2.5
      5
      7.5
      10
      下載: 導出CSV

      表  2  各部分理論剛度

      Table  2.   Theoretical stiffness of each part

      PartTheoretical stiffness
      Gear20 N?(μm?mm)?1
      Shaft289.44 N?m?(°)?1
      Spline9.768×107?P1/3 N?m?1
      Coupling1.87×104 N?m?rad?1
      下載: 導出CSV

      表  3  不同負載力矩下,各部分變形數據

      Table  3.   Deformation data of various parts under different loads

      PartTheoretical deformation/(10?3 °)
      2.5 N?m5 N?m7.5 N?m10 N?m
      Gear0.060.110.170.22
      Shaft8.6417.2725.9134.55
      Spline1.061.692.212.68
      Coupling7.6615.3222.9830.64
      Theoretical total deformation17.4234.3951.2768.09
      Experimental total deformationDrive-side15304865
      Back-side15315075
      下載: 導出CSV
      中文字幕在线观看
    • [1] Wang G J, Chen L, Yu L, et al. Research on the dynamic transmission error of a spur gear pair with eccentricities by finite element method. <italic>Mech Mach Theory</italic>, 2017, 109: 1 doi: 10.1016/j.mechmachtheory.2016.11.006
      [2] Yu L, Wang G J, Zou S D. The calculation of meshing efficiency of a new type of conical involute gear. <italic>Strojni?ki vestnik-J Mech Eng</italic>, 2017, 63(5): 320 doi: 10.5545/sv-jme.2016.3843
      [3] Zou S D, Wang G J, Yu L. Research on calculation of unloaded transmission error of planetary gear train caused by eccentricity // ASME 2017International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. Cleveland, 2017: 1
      [4] Michalec G W. Precision Gearing: Theory and Practice. New York: Wiley, 1966
      [5] Wu C S. The turning angle error from gears eccentric error. <italic>J Nanjing Inst Technol</italic>, 1982(4): 133

      吳慈生. 齒輪偏心誤差所引起的傳動誤差. 南京工學院學報, 1982(4):133
      [6] Zou S D, Wang G J. Research on transmission error of dual-eccentric gears. <italic>J Univ Electron Sci Technol China</italic>, 2017, 46(6): 955 doi: 10.3969/j.issn.1001-0548.2017.06.027

      鄒帥東, 王光建. 雙齒輪偏心的傳動誤差計算與研究. 電子科技大學學報, 2017, 46(6):955 doi: 10.3969/j.issn.1001-0548.2017.06.027
      [7] Yu L, Wang G J, Zou S D. The experimental research on gear eccentricity error of backlash-compensation gear device based on transmission error. <italic>Int J Precis Eng Manuf</italic>, 2018, 19(1): 5 doi: 10.1007/s12541-018-0001-7
      [8] Wang C B, Chen X A, Chen H, et al. Influence of error's randomness on transmission accuracy of planetary gear. <italic>J Chongqing Univ</italic>, 2012, 35(9): 41

      王朝兵, 陳小安, 陳宏, 等. 誤差隨機性對行星齒輪系傳動精度的影響特性. 重慶大學學報, 2012, 35(9):41
      [9] Guo Y, Parker R G. Dynamic modeling and analysis of a spur planetary gear involving tooth wedging and bearing clearance nonlinearity. <italic>Eur J Mech-A/Solids</italic>, 2010, 29(6): 1022 doi: 10.1016/j.euromechsol.2010.05.001
      [10] Guo Y C, Parker R G. Analytical determination of back-side contact gear mesh stiffness. <italic>Mech Mach Theory</italic>, 2014, 78: 263 doi: 10.1016/j.mechmachtheory.2014.03.011
      [11] Yu W N, Mechefske C K, Timusk M. Influence of the addendum modification on spur gear back-side mesh stiffness and dynamics. <italic>J Sound Vib</italic>, 2017, 389: 183 doi: 10.1016/j.jsv.2016.11.030
      [12] Shi J F, Gou X F, Zhu L Y. Modeling and analysis of a spur gear pair considering multi-state mesh with time-varying parameters and backlash. <italic>Mech Mach Theory</italic>, 2019, 134: 582 doi: 10.1016/j.mechmachtheory.2019.01.018
      [13] Raghuwanshi N K, Parey A. Effect of back-side contact on mesh stiffness of spur gear pair by finite element method. <italic>Procedia Eng</italic>, 2017, 173: 1538 doi: 10.1016/j.proeng.2016.12.239
      [14] Shi Z G, Zuo Z Y. Backstepping control for gear transmission servo systems with backlash nonlinearity. <italic>IEEE Trans Autom Sci Eng</italic>, 2015, 12(2): 752 doi: 10.1109/TASE.2014.2369430
      [15] Li X P, Mu J X, Pan W J, et al. Influence of fractal backlash on dynamic behavior of gear-bearing system. <italic>J Mech Eng</italic>, 2018, 54(9): 153

      李小彭, 牟佳信, 潘五九, 等. 具有分形特性的齒側間隙對齒輪-軸承系統動態特性的影響. 機械工程學報, 2018, 54(9):153
      [16] Chen Q, Ma Y B, Huang S W, et al. Research on gears’ dynamic performance influenced by gear backlash based on fractal theory. <italic>Appl Surf Sci</italic>, 2014, 313: 325 doi: 10.1016/j.apsusc.2014.05.210
      [17] Yi Y, Huang K, Xiong Y S, et al. Nonlinear dynamic modelling and analysis for a spur gear system with time-varying pressure angle and gear backlash. <italic>Mech Syst Signal Process</italic>, 2019, 132: 18 doi: 10.1016/j.ymssp.2019.06.013
      [18] Jin G H, Long S S, Gao P, et al. Load sharing characteristics and experimental research of cylindrical gear split-torque transmission system. <italic>J Central S Univ Sci Technol</italic>, 2019, 50(7): 1592

      靳廣虎, 龍珊珊, 高鵬, 等. 圓柱齒輪分扭傳動系統的均載特性及試驗研究. 中南大學學報: 自然科學版, 2019, 50(7):1592
      [19] Gui Y F, Zhu R P, Jin G H, et al. Dynamic and load sharing characteristic analysis of a nonlinear cylindrical gear split-torque transmission system with backlash. <italic>J Vib Shock</italic>, 2014, 33(18): 177

      桂永方, 朱如鵬, 靳廣虎, 等. 間隙非線性圓柱齒輪分流傳動系統動力學與均載特性分析. 振動與沖擊, 2014, 33(18):177
      [20] Gear manual editorial board. Gear Manual. 2nd Ed. Beijing: China Machine Press, 2006

      齒輪手冊編委會. 齒輪手冊. 2版. 北京: 機械工業出版社, 2006
      [21] Chen L. Simulation on the Dynamic Transmission Error of a New Type of Variable Tooth Thickness Gear System with Eccentric Gears[Dissertation]. Chongqing: Chongqing University, 2015

      陳林. 偏心激勵下新型變齒厚齒輪系統動態傳動誤差仿真研究[學位論文]. 重慶: 重慶大學, 2015
      [22] Yu L, Wang G J, He L L. The electrically controlling anti-backlash based on variable tooth thickness gear // <italic>The International Conference on Gears</italic>. <italic>Munich</italic>, 2015: 591
      [23] Yang Z. Study on Precision Assembly Key Parameters and Its Effects on Dynamics Performance of Anti-Backlash Gear System[Dissertation]. Changsha: National University of Defense Technology, 2014

      楊政. 消隙齒輪系統精密裝配關鍵參數及其動力學性能影響研究[學位論文]. 長沙: 國防科學技術大學, 2014
      [24] Yu L. The Research on Backlash Control Based on New Type of Conical Involute Gear [Dissertation]. Chongqing: Chongqing University, 2017

      喻立. 新型變齒厚齒輪側隙控制方法研究[學位論文]. 重慶: 重慶大學, 2017
      [25] Cheng D X. Handbook of Mechanical Design. 6th Ed. Beijing: Chemical Industry Press, 2016

      成大先. 機械設計手冊. 6版. 北京: 化學工業出版社, 2016
      [26] Gu B Z, Zhou Y M, Yang D H. Stiffness calculation and application of spline-ball bearing. <italic>Astron Res Technol</italic>, 2006, 3(4): 365

      顧伯忠, 周于鳴, 楊德華. 滾珠花鍵副的剛度的計算及應用. 天文研究與技術, 2006, 3(4):365
    • 加載中
    圖(14) / 表(3)
    計量
    • 文章訪問數:  1413
    • HTML全文瀏覽量:  915
    • PDF下載量:  36
    • 被引次數: 0
    出版歷程
    • 收稿日期:  2019-10-18
    • 刊出日期:  2020-09-11

    目錄

      /

      返回文章
      返回