• 《工程索引》(EI)刊源期刊
    • 中文核心期刊
    • 中國科技論文統計源期刊
    • 中國科學引文數據庫來源期刊

    留言板

    尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

    姓名
    郵箱
    手機號碼
    標題
    留言內容
    驗證碼

    全尾砂膏體流變學研究現狀與展望(上):概念、特性與模型

    吳愛祥 李紅 程海勇 王貽明 李翠平 阮竹恩

    吳愛祥, 李紅, 程海勇, 王貽明, 李翠平, 阮竹恩. 全尾砂膏體流變學研究現狀與展望(上):概念、特性與模型[J]. 工程科學學報, 2020, 42(7): 803-813. doi: 10.13374/j.issn2095-9389.2019.10.29.001
    引用本文: 吳愛祥, 李紅, 程海勇, 王貽明, 李翠平, 阮竹恩. 全尾砂膏體流變學研究現狀與展望(上):概念、特性與模型[J]. 工程科學學報, 2020, 42(7): 803-813. doi: 10.13374/j.issn2095-9389.2019.10.29.001
    WU Ai-xiang, LI Hong, CHENG Hai-yong, WANG Yi-ming, LI Cui-ping, RUAN Zhu-en. Status and prospects of researches on rheology of paste backfill using unclassified-tailings (Part 1): concepts, characteristics and models[J]. Chinese Journal of Engineering, 2020, 42(7): 803-813. doi: 10.13374/j.issn2095-9389.2019.10.29.001
    Citation: WU Ai-xiang, LI Hong, CHENG Hai-yong, WANG Yi-ming, LI Cui-ping, RUAN Zhu-en. Status and prospects of researches on rheology of paste backfill using unclassified-tailings (Part 1): concepts, characteristics and models[J]. Chinese Journal of Engineering, 2020, 42(7): 803-813. doi: 10.13374/j.issn2095-9389.2019.10.29.001

    全尾砂膏體流變學研究現狀與展望(上):概念、特性與模型

    doi: 10.13374/j.issn2095-9389.2019.10.29.001
    基金項目: 中國博士后科學基金資助項目(2019M663576);國家自然科學基金資助項目(51834001,51574013);金屬礦山高效開采與安全教育部重點實驗室開放基金資助項目(ustbmslab201801)
    詳細信息
      通訊作者:

      E-mail: haiker2007@163.com

    • 中圖分類號: TD853

    Status and prospects of researches on rheology of paste backfill using unclassified-tailings (Part 1): concepts, characteristics and models

    More Information
    • 摘要: 膏體充填為礦產資源的深部開采及可持續發展提供了安全、綠色、高效的技術保障,已成為礦業領域的研究熱點和發展趨勢之一。全尾砂膏體流變學是膏體充填全套工藝流程的重要理論基礎,深刻影響著膏體充填技術的發展。本文從膏體的內涵出發,系統性地論述了膏體流變學研究的必要性、特殊性及復雜性。并以膏體流變實驗結果為基礎,分析了全尾砂膏體的典型流變特性及最新研究成果。總結了常用的屈服型非牛頓流體流變模型,并探討了常用流變本構方程對膏體料漿的適用性,對其實際應用提出合理建議。同時對膏體流變特性的關鍵影響因素進行了概述。根據膏體流變學的研究現狀,歸納總結并提出了膏體流變學研究的重點與難點,指出現階段膏體流變學須從測試標準、本構方程、微觀機理及工程應用等方面深入研究。

       

    • 圖  1  典型的膏體剪切應力?時間曲線[33]

      Figure  1.  A typical shear stress?time curve of paste

      圖  2  不同剪切作用下膏體細觀演變示意圖[37]

      Figure  2.  Changes in the microstructure of paste under different shear intensities

      圖  3  觸變環實驗[24]

      Figure  3.  Thixotropic loops from experiments

      圖  4  觸變性表征方法[24]。(a)應力松弛特征曲線;(b)屈服應力回歸

      Figure  4.  A method for thixotropy characterization: (a) stress relaxation curves; (b) yield stress regression

      圖  5  常見的非牛頓體流變關系曲線。(a)剪切應力曲線;(b)表觀黏度曲線

      Figure  5.  Rheological curves of common non-Newtonian fluids: (a) shear stress curves; (b) apparent viscosity curves

      圖  6  Bingham流體管道流動分區圖

      Figure  6.  Flow regimes of Bingham fluid in pipes

      圖  7  膏體固態?流態轉變過程。(a)剪切應力曲線;(b)表觀黏度曲線[25]

      Figure  7.  Solid to liquid transitions of paste: (a) shear stress curves; (b) apparent viscosity curves

      圖  8  料漿體積分數與質量分數關系圖

      Figure  8.  Relationship between volume fraction and mass fraction of the slurry

      圖  9  全尾砂與常用硅酸鹽水泥粒徑分布

      Figure  9.  Particle distribution of unclassified tailings and common Portland cements

      表  1  非牛頓流體常用流變模型

      Table  1.   A list of non-Newtonian rheological models

      Name of modelsEquations
      Power-law[42]$\begin{array}{l} \tau {\rm{ = }}K{\left( {\dot \gamma } \right)^n} \\ n = 1,{\rm{ Newtonian}} \\ n > 1,{\rm{ Shear \;thickening}} \\ n < 1,{\rm{ Shear \;thinning}} \\ \end{array} $(1)
      Bingham[43]$\begin{array}{*{20}{l}}{\dot \gamma = 0}&{\tau < {\tau _{\rm{y}}}}\\{\tau {\rm{ = }}{\tau _{\rm{y}}} + {\eta _{\rm{p}}}\dot \gamma}&{\tau \geqslant {\tau _{\rm{y}}}}\end{array}$(2)
      Herschel and Bulkley$\begin{array}{*{20}{l}} {\tau {\rm{ = }}{\tau _{\rm{y}}} + K{\left( {\dot \gamma } \right)^n} }&{\tau > {\tau _{\rm{y}}}}\\ {\dot \gamma = 0 }&{\tau \leqslant {\tau _{\rm{y}}}} \end{array}$(3)
      Casson[44]$\begin{array}{*{20}{l}} {\sqrt \tau {\rm{ = }}\sqrt {{\tau _{\rm{y}}}} + \sqrt {{\eta _{\rm{c}}}\dot \gamma }}&{\left( {\tau > {\tau _{\rm{y}}}} \right) \left( {{\rm{or }}\;\tau = {\tau _{\rm{y}}} + {\eta _{\rm{p}}}\dot \gamma + 2\sqrt {{\tau _{\rm{y}}}{\eta _{\rm{p}}}\dot \gamma } } \right)}\\ {\dot \gamma = 0}&{\left( {\tau \leqslant {\tau _{\rm{y}}}} \right) } \end{array} $(4)
      Buckingham-Reiner[45]$\tau _{\rm{w}} \approx \dfrac{{\Delta PD}}{{4L}} $(5a)
      $\tau_{\rm{w}} = {\eta _{\rm{p}}}\dfrac{{8v}}{D}{\left[ {1 - \dfrac{4}{3}\left( {{\tau _{\rm{y}}}\dfrac{{4L}}{{\Delta PD}}} \right) + \dfrac{1}{3}{{\left( {{\tau _{\rm{y}}}\dfrac{{4L}}{{\Delta PD}}} \right)}^4}} \right]^{ - 1}} $(5b)
      $ {\tau _{\rm{w}}} \approx \dfrac{4}{3}{\tau _{\rm{y}}} + {\eta _{\rm{p}}}\left( {\dfrac{{8v}}{D}} \right), \;{\rm{for}} \;\tau \gg {\tau _{\rm{y}}} $(5c)
      下載: 導出CSV
      中文字幕在线观看
    • [1] Cai M F, Xue D L, Ren F H. Current status and development strategy of metal mines. Chin J Eng, 2019, 41(4): 417

      蔡美峰, 薛鼎龍, 任奮華. 金屬礦深部開采現狀與發展戰略. 工程科學學報, 2019, 41(4):417
      [2] Gu H K. Engineering example of comprehensive utilization of tailings. Multipurpose Utilization Miner Resour, 2017(6): 93 doi: 10.3969/j.issn.1000-6532.2017.06.020

      谷泓坤. 尾砂綜合利用的工程實例. 礦產綜合利用, 2017(6):93 doi: 10.3969/j.issn.1000-6532.2017.06.020
      [3] Liu H L, Wang W P, He C Y, et al. Present situation and development trend of goaf treatment technology in metal and non-metal underground mines. Mod Min, 2018(6): 1 doi: 10.3969/j.issn.1674-6082.2018.06.001

      劉海林, 汪為平, 何承堯, 等. 金屬非金屬地下礦山采空區治理技術現狀及發展趨勢. 現代礦業, 2018(6):1 doi: 10.3969/j.issn.1674-6082.2018.06.001
      [4] Wu A X, Wang Y, Wang H J. Status and prospects of the paste backfill technology. Met Mine, 2016(7): 1 doi: 10.3969/j.issn.1001-1250.2016.07.001

      吳愛祥, 王勇, 王洪江. 膏體充填技術現狀及趨勢. 金屬礦山, 2016(7):1 doi: 10.3969/j.issn.1001-1250.2016.07.001
      [5] Landriault D A, Verburg R, Cincilla W, et al. Paste technology for underground backfill and surface tailings disposal applications // Short Course Notes, Canadian Institute of Mining and Metallurgy. Vancouver, 1997: 120
      [6] Wu A X, Yang Y, Cheng H Y, et al. Status and prospects of paste technology in China. Chin J Eng, 2018, 40(5): 517

      吳愛祥, 楊瑩, 程海勇, 等. 中國膏體技術發展現狀與趨勢. 工程科學學報, 2018, 40(5):517
      [7] Yang B H, Li C P, Wu A X, et al. Analysis on influencing factors of coarse particles migration in pipeline transportation of paste slurry. Chin J Nonferrous Met, 2018, 28(10): 2143 doi: 10.1016/S1003-6326(18)64859-9

      顏丙恒, 李翠平, 吳愛祥, 等. 膏體料漿管道輸送中粗顆粒遷移的影響因素分析. 中國有色金屬學報, 2018, 28(10):2143 doi: 10.1016/S1003-6326(18)64859-9
      [8] Ovarlez G, Bertrand F, Coussot P, et al. Shear-induced sedimentation in yield stress fluids. J Non-Newtonian Fluid Mech, 2012, 177-178: 19 doi: 10.1016/j.jnnfm.2012.03.013
      [9] Atapattu D D, Chhabra R P, Uhlherr P H T. Creeping sphere motion in Herschel-Bulkley fluids: flow field and drag. J Non-Newtonian Fluid Mech, 1995, 59(2-3): 245 doi: 10.1016/0377-0257(95)01373-4
      [10] Belem T, Benzaazoua M. Design and application of underground mine paste backfill technology. Geotech Geol Eng, 2008, 26(2): 147 doi: 10.1007/s10706-007-9154-3
      [11] Belem T, Benzaazoua M. An overview on the use of paste backfill technology as a ground support method in cut-and-fill mines // Proceedings of the Fifth International Symposium on Ground Support. Perth, 2004: 637
      [12] Jewell RJ, Fourie A B. Paste and Thickened Tailings – A Guide. Perth: Australian Centre for Geomechanics, 2015
      [13] Hustrulid W A, Hustrulid W A, Bullock R L, et al. Underground Mining Methods Engineering Fundamentals and International Case Studies. USA, SME, 2001
      [14] Kesimal A, Yilmaz E, Ercikdi B. Evaluation of paste backfill mixtures consisting of sulphide-rich mill tailings and varying cement contents. Cem Concr Res, 2004, 34(10): 1817 doi: 10.1016/j.cemconres.2004.01.018
      [15] Liu T Y, Zhou C P, Jin M L, et al. Technology and Application on Cut and Fill Mining. Beijing: Metallurgical Industry Press, 2001

      劉同有, 周成浦, 金銘良, 等. 充填采礦技術與應用. 北京: 冶金工業出版社, 2001
      [16] Wang X M, Gu D S, Zhang Q L. Filling Theory and Pipeline Transportation Technology in Deep Mine. Changsha: Central South University Press, 2010

      王新民, 古德生, 張欽禮. 深井礦山充填理論與管道輸送技術. 長沙: 中南大學出版社, 2010
      [17] Wang H J, Wang Y, Wu A X, et al. Research of paste new definition from the viewpoint of saturation ratio and bleeding rate. J Wuhan Univ Technol, 2011, 33(6): 85 doi: 10.3963/j.issn.1671-4431.2011.06.020

      王洪江, 王勇, 吳愛祥, 等. 從飽和率和泌水率角度探討膏體新定義. 武漢理工大學學報, 2011, 33(6):85 doi: 10.3963/j.issn.1671-4431.2011.06.020
      [18] Ruan Z E, Li C P, Zhong Y. Development progress and trend of whole-tailings particles’ migration behavior during preparation of whole-tailings paste. Met Mine, 2014(12): 13

      阮竹恩, 李翠平, 鐘媛. 全尾膏體制備過程中尾礦顆粒運移行為研究進展與趨勢. 金屬礦山, 2014(12):13
      [19] Wu A X, Jiao H Z, Wang H J, et al. Mechanical model of scraper rake torque in deep-cone thickener. J Cent South Univ Sci Technol, 2012, 43(4): 1469

      吳愛祥, 焦華喆, 王洪江, 等. 深錐濃密機攪拌刮泥耙扭矩力學模型. 中南大學學報: 自然科學版, 2012, 43(4):1469
      [20] Jiao H Z, Wang S F, Yang Y X, et al. Water recovery improvement by shearing of gravity-thickened tailings for cemented paste backfill. J Clean Prod, 2020, 245: 118882 doi: 10.1016/j.jclepro.2019.118882
      [21] Wang H J, Yang L H, Wang Y, et al. Multi-scale materials’ dispersive mixing technology of unclassified tailings paste. J Wuhan Univ Technol, 2017, 39(12): 76

      王洪江, 楊柳華, 王勇, 等. 全尾砂膏體多尺度物料攪拌均質化技術. 武漢理工大學學報, 2017, 39(12):76
      [22] Yang L H, Wang H J, Wu A X, et al. Status and development tendency of the full-tailings paste mixing technology. Met Mine, 2016(7): 34 doi: 10.3969/j.issn.1001-1250.2016.07.005

      楊柳華, 王洪江, 吳愛祥, 等. 全尾砂膏體攪拌技術現狀及發展趨勢. 金屬礦山, 2016(7):34 doi: 10.3969/j.issn.1001-1250.2016.07.005
      [23] Yang L H, Wang H J, Wu A X, et al. Thixotropy of unclassified pastes in the process of stirring and shearing. Chin J Eng, 2016, 38(10): 1343

      楊柳華, 王洪江, 吳愛祥, 等. 全尾砂膏體攪拌剪切過程的觸變性. 工程科學學報, 2016, 38(10):1343
      [24] Cheng H Y. Characteristics of Rheological Parameters and Pipe Resistance under the Time-Temperature Effect[Dissertation]. Beijing: University of Science and Technology Beijing, 2018

      程海勇. 時溫效應下膏體流變參數及管阻特性[學位論文]. 北京: 北京科技大學, 2018
      [25] Liu X H. Study on Rheological Behavior and Pipe Flow Resistance of Paste Backfill[Dissertation]. Beijing: University of Science and Technology Beijing, 2015

      劉曉輝. 膏體流變行為及其管流阻力特性研究[學位論文]. 北京: 北京科技大學, 2015
      [26] Qiu H F, Liu L, Sun W B, et al. Experimental study on strength distribution of backfill in goaf. J Cent South Univ Sci Technol, 2018, 49(10): 2584

      邱華富, 劉浪, 孫偉博, 等. 采空區充填體強度分布規律試驗研究. 中南大學學報: 自然科學版, 2018, 49(10):2584
      [27] Lu H J, Liang P, Gan D Q, et al. Research on flow sedimentation law of filling slurry and mechanical characteristics of backfill body. Rock Soil Mech, 2017, 38(Suppl1): 263

      盧宏建, 梁鵬, 甘德清, 等. 充填料漿流動沉降規律與充填體力學特性研究. 巖土力學, 2017, 38(增刊1): 263
      [28] Wang X M, Zhu Y Y, Jiang Z L, et al. Stability of filling materials with different roof-contacted filling ratios in upward filling stoping method. Sci Technol Rev, 2014, 32(20): 37 doi: 10.3981/j.issn.1000-7857.2014.20.005

      王新民, 朱陽亞, 姜志良, 等. 上向進路充填采礦法不同接頂率充填體的穩定性. 科技導報, 2014, 32(20):37 doi: 10.3981/j.issn.1000-7857.2014.20.005
      [29] Pullum L, Boger D V, Sofra F. Hydraulic mineral waste transport and storage. Ann Rev Fluid Mech, 2018, 50: 157 doi: 10.1146/annurev-fluid-122316-045027
      [30] Pullum L, Graham L, Rudman M, et al. High concentration suspension pumping. Miner Eng, 2006, 19(5): 471 doi: 10.1016/j.mineng.2005.08.010
      [31] Wu A X, Wang H J. Theory and Technology of Paste Backfill in Metal Mines. Beijing: Science Press, 2015

      吳愛祥, 王洪江. 金屬礦膏體充填理論與技術. 北京: 科學出版社, 2015
      [32] Yang L H, Wang H J, Li H, et al. Effect of high mixing intensity on rheological properties of cemented paste backfill. Minerals, 2019, 9(4): 240 doi: 10.3390/min9040240
      [33] Barnes H A, Nguyen Q D. Rotating vane rheometry—a review. J Non-Newtonian Fluid Mech, 2001, 98(1): 1 doi: 10.1016/S0377-0257(01)00095-7
      [34] Li S, Wang X M, Zhang Q L, et al. Time-varying characteristic of paste-like super-fine unclassified tailings in long self-flowing transportation. J Northeast Univ Nat Sci, 2016, 37(7): 1045

      李帥, 王新民, 張欽禮, 等. 超細全尾砂似膏體長距離自流輸送的時變特性. 東北大學學報: 自然科學版, 2016, 37(7):1045
      [35] Zhai Y G, Wu A X, Wang H J, et al. Study on rheological properties of the unclassified-tailings paste. Met Mine, 2010(12): 30

      翟永剛, 吳愛祥, 王洪江, 等. 全尾砂膏體料漿的流變特性研究. 金屬礦山, 2010(12):30
      [36] Chen Q R. Research on the Friction Loss of Upward Paste Pumping Filling in Yangla Copper Mine[Dissertation]. Beijing: University of Science and Technology Beijing, 2011

      陳琴瑞. 羊拉銅礦膏體上揚式泵送充填摩阻損失研究[學位論文]. 北京: 北京科技大學, 2011
      [37] Wang H J, Yang L H, Li H, et al. Using coupled rheometer-FBRM to study rheological properties and microstructure of cemented paste backfill. Adv Mater Sci Eng, 2019, 2019: 6813929
      [38] Liu X H. Macro-micro analysis and test method of rheological behavior of paste tailings. Met Mine, 2018(5): 7

      劉曉輝. 膏體尾礦流變行為的宏細觀分析及其測定方法. 金屬礦山, 2018(5):7
      [39] Liu X H, Wu A X, Wang H J, et al. Experimental studies on the thixotropic characteristics of unclassified-tailings paste slurry. J Wuhan Univ Technol Transp Sci Eng, 2014, 38(3): 539

      劉曉輝, 吳愛祥, 王洪江, 等. 全尾膏體觸變特性實驗研究. 武漢理工大學學報: 交通科學與工程版, 2014, 38(3):539
      [40] Li J, Xiao C C, Jiang J, et al. Thixotropic properties of paste pumping effect on pipeline resistance. Chin Min Mag, 2017, 26(Suppl2): 283

      李俊, 肖崇春, 姜寄, 等. 泵送膏體觸變特性對管道阻力的影響. 中國礦業, 2017, 26(增刊2): 283
      [41] Mewis J, Wagner N J. Thixotropy. Adv Colloid Interface Sci, 2009, 147-148: 214 doi: 10.1016/j.cis.2008.09.005
      [42] Atzeni C, Massidda L, Sanna U. Comparison between rheological models for portland cement pastes. Cem Concr Res, 1985, 15(3): 511 doi: 10.1016/0008-8846(85)90125-5
      [43] Bingham E C. Fluidity and Plasticity. New York & London: McGraw-Hill Book Company, 1922
      [44] Casson N A. Flow Equation for Pigment Oil Suspensions of the Printing Ink Type. London: Pergamon Press, 1959
      [45] Buckingham E. On plastic flow through capillary tubes // Proceedings of American Society for Testing and Materials. 1921: 1154
      [46] Zou H. Research on Paste Parameter of Unclassified Tailings-Granulated Blast Furnace Slag[Dissertation]. Hengyang: University of South China, 2007

      鄒輝. 全尾砂-水淬渣膏體性能研究[學位論文]. 衡陽: 南華大學, 2007
      [47] Zhao C Z. Study on Coal Mine New Paste Filling Material Properties and Its Application[Dissertation]. Xuzhou: China University of Mining and Technology, 2008

      趙才智. 煤礦新型膏體充填材料性能及其應用研究[學位論文]. 徐州: 中國礦業大學, 2008
      [48] Wang X M, Xiao W G, Wang X W, et al. Study on rheological properties of full tailing paste filling slurry of Jinchuan mine. Min Metall Eng, 2002, 22(3): 13 doi: 10.3969/j.issn.0253-6099.2002.03.004

      王新民, 肖衛國, 王小衛, 等. 金川全尾砂膏體充填料漿流變特性研究. 礦冶工程, 2002, 22(3):13 doi: 10.3969/j.issn.0253-6099.2002.03.004
      [49] Zhang Z S. Study on Preparation and Rheological Properties of Waste Rock Paste from Jinchuan Mine[Dissertation]. Kunming: Kunming University of Science and Technology, 2008

      張宗生. 金川礦山廢石膏體配制與流變特性研究[學位論文]. 昆明: 昆明理工大學, 2008
      [50] Wang W S. Study of Rheological Characters and Technologies of Cream-Body Fill[Dissertation]. Fuxin: Liaoning Technical University, 2004

      王五松. 膏體充填流變特性及工藝研究[學位論文]. 阜新: 遼寧工程技術大學, 2004
      [51] Nguyen Q D, Boger D V. Measuring the flow properties of yield stress fluids. Annu Rev Fluid Mech, 1992, 24(1): 47 doi: 10.1146/annurev.fl.24.010192.000403
      [52] Gawu S K Y, Fourie A B. Assessment of the modified slump test as a measure of the yield stress of high-density thickened tailings. Can Geotech J, 2004, 41(1): 39 doi: 10.1139/t03-071
      [53] Clayton S A. The Importance of Rheology in Paste Fill Operations[Dissertation]. Melbourne: University of Melbourne, 2002
      [54] Potvin Y, Thomas E G, Fourie A B. Handbook on Mine Fill. Perth: Australian Centre for Geomechanics, 2005
      [55] Li H, Wu A X, Wang H J. Evaluation of short-term strength development of cemented backfill with varying sulphide contents and the use of additives. J Environ Manage, 2019, 239: 279 doi: 10.1016/j.jenvman.2019.03.057
      [56] Cheng H Y, Wu S C, Wu A X, et al. Grading characterization and yield stress prediction based on paste stability coefficient. Chin J Eng, 2018, 40(10): 1168

      程海勇, 吳順川, 吳愛祥, 等. 基于膏體穩定系數的級配表征及屈服應力預測. 工程科學學報, 2018, 40(10):1168
      [57] Cheng H Y, Wu S C, Zhang X Q, et al. Effect of particle gradation characteristics on yield stress of cemented paste backfill. Int J Miner Metall Mater, 2020, 27(1): 10 doi: 10.1007/s12613-019-1865-y
      [58] Xu W B, Yang B G, Yang S L, et al. Experimental study on correlativity between rheological parameters and grain grading of coal gauge backfill slurry. J Cent South Univ Sci Technol, 2016, 47(4): 1282

      徐文彬, 楊寶貴, 楊勝利, 等. 矸石充填料漿流變特性與顆粒級配相關性試驗研究. 中南大學學報: 自然科學版, 2016, 47(4):1282
      [59] Hu H, Sun H H, Huang Y C. Rheological characteristics of paste-like backfill slurry and analysis of its influence factors. Nonferrous Met Min, 2003, 55(3): 4

      胡華, 孫恒虎, 黃玉誠. 似膏體充填料漿流變特性及其多因素影響分析. 有色金屬: 礦山部分, 2003, 55(3):4
      [60] Meggyes T, Debreczeni A. Paste technology for tailings management. Land Contam Reclamation, 2006, 14(4): 815 doi: 10.2462/09670513.694
      [61] Kesimal A, Yilmaz E, Ercikdi B, et al. Effect of properties of tailings and binder on the short-and long-term strength and stability of cemented paste backfill. Mater Lett, 2005, 59(28): 3703 doi: 10.1016/j.matlet.2005.06.042
      [62] Wang S Y, Wu A X, Ruan Z E, et al. Rheological properties of paste slurry and influence factors based on pipe loop test. J Cent South Univ Sci Technol, 2018, 49(10): 2519

      王少勇, 吳愛祥, 阮竹恩, 等. 基于環管實驗的膏體流變特性及影響因素. 中南大學學報: 自然科學版, 2018, 49(10):2519
      [63] Long H C, Xia J X, Cao B. Effect of coarse/fine materials ratio on rheological properties. Min Metall Eng, 2017, 37(2): 6 doi: 10.3969/j.issn.0253-6099.2017.02.002

      龍海潮, 夏建新, 曹斌. 粗細物料配比對漿體流變特性影響研究. 礦冶工程, 2017, 37(2):6 doi: 10.3969/j.issn.0253-6099.2017.02.002
      [64] Sun N X, Xu Z Q, Qu S J, et al. Effect of particle size distribution on rheology behavior of high-concentration coal water slurry. Coal Eng, 2015, 47(3): 122 doi: 10.11799/ce201503040

      孫南翔, 徐志強, 曲思建, 等. 顆粒分布對高濃度水煤漿流變性能的影響. 煤炭工程, 2015, 47(3):122 doi: 10.11799/ce201503040
      [65] Zhang X X. Study on Rheological Characteristics of Waste Stone-Tailings High-Concentration Backfill Slurry and the Influence of Multiple Factors[Dissertation]. Kunming: Kunming University of Science and Technology, 2016

      張修香. 礦山廢石-尾砂高濃度充填料漿的流變特性及多因素影響規律研究[學位論文]. 昆明: 昆明理工大學, 2016
      [66] Cheng H Y, Wu S C, Li H, et al. Influence of time and temperature on rheology and flow performance of cemented paste backfill. Constr Build Mater, 2020, 231: 117117 doi: 10.1016/j.conbuildmat.2019.117117
      [67] Jiang H Q, Fall M, Liang C. Yield stress of cemented paste backfill in sub-zero environments: experimental results. Miner Eng, 2016, 92: 141 doi: 10.1016/j.mineng.2016.03.014
      [68] Xue Z L, Zhang Y Z, Bao Y H, et al. Study on rheological property of unclassified-tailing slurry considering the temperature effect. Met Mine, 2016(10): 35 doi: 10.3969/j.issn.1001-1250.2016.10.008

      薛振林, 張友志, 鮑亞豪, 等. 考慮溫度影響的全尾砂料漿流變性能研究. 金屬礦山, 2016(10):35 doi: 10.3969/j.issn.1001-1250.2016.10.008
      [69] Xue Z L, Gan D Q, Zhang Y Z, et al. Rheological behavior of ultrafine-tailings cemented paste backfill in high-temperature mining conditions. Constr Build Mater, 2020, 253: 119212 doi: 10.1016/j.conbuildmat.2020.119212
      [70] Kou Y P, Qi Z J, Song Z P, et al. Experimental study on rheological properties of high-concentration filling slurry with full tailings. Min Res Dev, 2018, 38(12): 32

      寇云鵬, 齊兆軍, 宋澤普, 等. 全尾砂高濃度充填料漿流變特性試驗研究. 礦業研究與開發, 2018, 38(12):32
      [71] Wu S C, Han L Q, Cheng Z Q, et al. Study on the limit equilibrium slice method considering characteristics of inter-slice normal forces distribution: the improved Spencer method. Environ Earth Sci, 2019, 78(20): 611 doi: 10.1007/s12665-019-8621-5
      [72] Cheng H Y, Wu S C, Zhang X Q, et al. A novel prediction model of strength of paste backfill prepared from waste-unclassified tailings. Adv Mater Sci Eng, 2019, 2019: 3574190
      [73] Nguyen Q D, Boger D V. Application of rheology to solving tailings disposal problems. Int J Miner Process, 1998, 54(3-4): 217 doi: 10.1016/S0301-7516(98)00011-8
      [74] Sofra F, Boger D V. Rheology for thickened tailings and paste–history, state-of-the-art and future directions // Proceedings of 14th International Seminar on Paste and Thickened Tailings (Paste 11). Perth, 2011: 131
    • 加載中
    圖(9) / 表(1)
    計量
    • 文章訪問數:  2370
    • HTML全文瀏覽量:  1355
    • PDF下載量:  167
    • 被引次數: 0
    出版歷程
    • 收稿日期:  2019-10-29
    • 刊出日期:  2020-07-01

    目錄

      /

      返回文章
      返回