• 《工程索引》(EI)刊源期刊
    • 中文核心期刊
    • 中國科技論文統計源期刊
    • 中國科學引文數據庫來源期刊

    留言板

    尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

    姓名
    郵箱
    手機號碼
    標題
    留言內容
    驗證碼

    V2O5/MXene納米復合材料制備及儲能性能

    黃瑩瑩 李庚輝 趙博 路金林 亢淑梅 陳書文

    黃瑩瑩, 李庚輝, 趙博, 路金林, 亢淑梅, 陳書文. V2O5/MXene納米復合材料制備及儲能性能[J]. 工程科學學報, 2020, 42(8): 1018-1028. doi: 10.13374/j.issn2095-9389.2019.11.07.002
    引用本文: 黃瑩瑩, 李庚輝, 趙博, 路金林, 亢淑梅, 陳書文. V2O5/MXene納米復合材料制備及儲能性能[J]. 工程科學學報, 2020, 42(8): 1018-1028. doi: 10.13374/j.issn2095-9389.2019.11.07.002
    HUANG Ying-ying, LI Geng-hui, ZHAO Bo, LU Jin-lin, KANG Shu-mei, CHEN Shu-wen. Preparation and energy storage properties of V2O5/MXene nanocomposites[J]. Chinese Journal of Engineering, 2020, 42(8): 1018-1028. doi: 10.13374/j.issn2095-9389.2019.11.07.002
    Citation: HUANG Ying-ying, LI Geng-hui, ZHAO Bo, LU Jin-lin, KANG Shu-mei, CHEN Shu-wen. Preparation and energy storage properties of V2O5/MXene nanocomposites[J]. Chinese Journal of Engineering, 2020, 42(8): 1018-1028. doi: 10.13374/j.issn2095-9389.2019.11.07.002

    V2O5/MXene納米復合材料制備及儲能性能

    doi: 10.13374/j.issn2095-9389.2019.11.07.002
    基金項目: 國家自然科學基金資助項目(51774177)
    詳細信息
      通訊作者:

      E-mail:783636211@qq.com

    • 中圖分類號: TM53.0

    Preparation and energy storage properties of V2O5/MXene nanocomposites

    More Information
    • 摘要: 利用氫氟酸(HF)刻蝕MAX(Ti3AlC2)相獲得一種新型二維層狀材料MXene(Ti3C2Tx),利用液相插層法擴大MXene材料層間距,然后在MXene表面分別負載納米片狀(NSV)和納米帶狀(NBV)的五氧化二釩(V2O5)。利用X射線衍射(XRD)、比表面積測試分析(BET)和高分辨場發射掃描電鏡(FESEM)等手段對復合材料進行了結構表征。結果表明:MXene層間距增加;且兩種形貌的五氧化二釩均勻的負載在MXene表面。這兩種納米復合材料的比表面積比MXene高,意味著它們可以為電化學反應提供更多的活性位點。利用多種電化學技術對V2O5,MXene和不同V2O5/MXene納米復合材料在1.0 mol·L?1 Na2SO4和1.0 mol·L?1 LiNO3電解液中進行了電化學性能測試。結果表明:當電流密度為1 A·g?1時,在1.0 mol·L?1 Na2SO4電解液中MXene,V2O5,NSV/MXene和NBV/MXene的比電容分別為8.1,15.7,96.8和88.5 F·g?1;在1.0 mol·L?1 LiNO3電解液中NSV/MXene和NBV/MXene的比電容分別為64.6,46.7,180.0和114.0 F·g?1。表明所制備的NSV/MXene納米復合材料是一種有研究和開發潛力的超級電容器電極材料。

       

    • 圖  1  NBV/MXene和NSV/MXene的制備過程

      Figure  1.  Fabrication procedure for NBV/MXene and NSV/MXene

      圖  2  試樣的X射線衍射圖譜(a)和氮氣吸附?脫附等溫曲線(b)(插圖為內部孔徑尺寸分布曲線)

      Figure  2.  XRD patterns (a) and N2 adsorption/desorption isotherms (b) of the different samples (inset showing the plots of pore size distribution)

      圖  3  試樣的傅里葉紅外光譜圖(a),拉曼光譜曲線(b)和能量散布分析光譜(c)

      Figure  3.  FTIR (a), Raman spectra (b), and EDS spectra (c) of samples

      圖  4  試樣的場發射掃描電子顯微鏡照片。(a)MXene;(b)NBV/MXene;(c)NSV/MXene

      Figure  4.  FESEM images of samples: (a) MXene; (b) NBV/MXene; (c) NSV/MXene

      圖  5  試樣的X射線光電子能譜。(a)試樣的X射線光電子能總譜;(b~d) 3種樣品的Ti2p譜圖;(e)NBV/MXene的V2p譜圖;(f)NSV/MXene的V2p譜圖

      Figure  5.  XPS full survey scan spectra: (a) XPS full survey scan spectra for all samples; (b-d) deconvolution of Ti2p peaks of three samples; deconvolution of V2p peaks of NBV/MXene (e) and NSV/MXene (f)

      圖  6  循環伏安曲線。(a)MXene和純V2O5電極材料在20 mV·s?1時;(b)NBV/MXene在1 mol·L?1 Na2SO4;(c)NSV/MXene在1 mol·L?1 Na2SO4;(d)NBV/MXene在1 mol·L?1 LiNO3;(e)NSV/MXene在1 mol·L?1 LiNO3;(f)NBV/MXene和NSV/MXene在20 mV·s?1

      Figure  6.  CV curves: (a) MXene and pure V2O5 at 20 mV·s?1; (b) NBV/MXene in 1 mol·L?1 Na2SO4; (c) NSV/MXene in 1 mol·L?1 Na2SO4; (d) NBV/MXene in 1 mol·L?1 LiNO3; (e) NSV/MXene in 1 mol·L?1 LiNO3; (f) NBV/MXene and NSV/MXene at 20 mV·s?1

      圖  7  不同掃速下的lgi和lgv線性擬合圖。(a)NBV/MXene在1 mol·L?1 Na2SO4;(b)NSV/MXene在1 mol·L?1 Na2SO4;(c)NBV/MXene在1 mol·L?1 LiNO3;(d)NSV/MXene在1 mol·L?1 LiNO3

      Figure  7.  lgi vs lgv linear fit at different scan rates: (a) NBV/MXene in 1 mol·L?1 Na2SO4; (b) NSV/MXene 1 mol·L?1 Na2SO4; (c) NBV/MXene in 1 mol·L?1 LiNO3; (d) NSV/MXene in 1 mol·L?1 LiNO3

      圖  8  掃速為50 mV·s?1的不同試樣的贗電容貢獻率。(a)NBV/MXene在1 mol·L?1 Na2SO4;(b)NSV/MXene在1 mol·L?1 Na2SO4;(c)NBV/MXene在1 mol·L?1 LiNO3;(d)NSV/MXene在1 mol·L?1 LiNO3

      Figure  8.  Pseudocapacitance contribution rate of samples at 50 mV·s?1: (a) NBV/MXene in 1 mol·L?1 Na2SO4; (b) NSV/MXene in 1 mol·L?1 Na2SO4; (c) NBV/MXene in 1 mol·L?1 LiNO3; (d) NSV/MXene in 1 mol·L?1 LiNO3

      圖  9  (a)MXene和純V2O5電極材料在1 A·g?1時分別在兩種電解液中的恒流充放電曲線對比圖;(b)NBV/MXene在1 mol·L?1 Na2SO4,(c)NSV/MXene在1 mol·L?1 Na2SO4,(d)NBV/MXene在1 mol·L?1 LiNO3和(e)NSV/MXene在1 mol·L?1 LiNO3的恒流充放電曲線;(f)NBV/MXene和NSV/MXene在1 mol·L?1 Na2SO4,NBV/MXene和NSV/MXene在1 mol·L?1 LiNO3在1 A·g?1的恒流充放電曲線對比圖;(g)不同樣品在不同電解液中不同電流密度電容量對比圖

      Figure  9.  (a) GCD curves of MXene and pure V2O5 at 1 A·g?1 in different electrolytes; GCD curves for NBV/MXene in 1 mol·L?1 Na2SO4 (b), NSV/MXene in 1 mol·L?1 Na2SO4 (c), NBV/MXene in 1 mol·L?1 LiNO3 (d), and NSV/MXene in 1 mol·L?1 LiNO3 (e); (f) GCD curves of the electrode materials at 1 A·g?1 in different electrolytes; (g) comparison diagram of specific capacitance for different samples at different densities in different electrolytes

      圖  10  電極材料在不同電解液中的交流阻抗圖譜。(a) MXene和純V2O5;(b) NBV/MXene和NSV/MXene

      Figure  10.  EIS spectra of the different samples in different electrolytes: (a) MXene and pure V2O5; (b) NBV/MXene and NSV/MXene

      中文字幕在线观看
    • [1] Li S, Niu J J, Zhao Y C, et al. High-rate aluminium yolk-shell nanoparticle anode for Li-ion battery with long cycle life and ultrahigh capacity. <italic>Nat Commun</italic>, 2015, 6: 7872 doi: 10.1038/ncomms8872
      [2] Liu Q, Nayfeh O, Nayfeh M H, et al. Flexible supercapacitor sheets based on hybrid nanocomposite materials. <italic>Nano Energy</italic>, 2013, 2(1): 133 doi: 10.1016/j.nanoen.2012.08.007
      [3] Yu J J, Liao B, Zhang X. Fabrication of 3D ZnO/CuO nanotrees and investigation of their photoelectrochemical properties. <italic>J Rare Met</italic>, 2018, 42(5): 449
      [4] Wu B, Liao B, Liu X, Wen J K. A study on electrochemical fundamentals and kinetics of bioleaching of chalcocite. <italic>J Rare Met</italic>, 2019, 43(12): 1332
      [5] Wu L, Zhong S K, Lu J J, et al. Synthesis of Cr-doped LiMnPO<sub>4</sub>/C cathode materials by sol-gel combined ball milling method and its electrochemical properties. <italic>Ionics</italic>, 2013, 19(7): 1061 doi: 10.1007/s11581-013-0919-9
      [6] He B, Chen P, Xie Y, et al. 20(R)-Ginsenoside Rg3 protects SH-SY5Y cells against apoptosis induced by oxygen and glucose deprivation/reperfusion. <italic>Bioorg Med Chem Lett</italic>, 2017, 27(16): 3867 doi: 10.1016/j.bmcl.2017.06.045
      [7] Chen C, Xie X Q, Anasori B, et al. MoS<sub>2</sub>-on-MXene heterostructures as highly reversible anode materials for lithium‐ion batteries. <italic>Angew Chem Int Ed</italic>, 2018, 57(7): 1846 doi: 10.1002/anie.201710616
      [8] Zhang X, Zhang Z H, Zhou Z. MXene-based materials for electrochemical energy storage. <italic>J Energy Chem</italic>, 2018, 27(1): 73 doi: 10.1016/j.jechem.2017.08.004
      [9] Jiang Q, Kurra N, Alhabeb M, et al. All pseudocapacitive MXene-RuO<sub>2</sub> asymmetric supercapacitors. <italic>Adv Energy Mater</italic>, 2018, 8(13): 1703043 doi: 10.1002/aenm.201703043
      [10] Yang J, Lan T B, Liu J D, et al. Supercapacitor electrode of hollow spherical V<sub>2</sub>O<sub>5</sub> with a high pseudocapacitance in aqueous solution. <italic>Electrochim Acta</italic>, 2013, 105: 489 doi: 10.1016/j.electacta.2013.05.023
      [11] Lukatskaya M R, Bak S M, Yu X Q, et al. Probing the mechanism of high capacitance in 2D titanium carbide using <italic>in situ</italic> X-ray absorption spectroscopy. <italic>Adv Energy Mater</italic>, 2015, 5(15): 1500589 doi: 10.1002/aenm.201500589
      [12] Lv G X, Wang J, Shi Z Q, et al. Intercalation and delamination of two-dimensional MXene (Ti<sub>3</sub>C<sub>2</sub>T<sub><italic>x</italic></sub>) and application in sodium-ion batteries. <italic>Mater Lett</italic>, 2018, 219: 45 doi: 10.1016/j.matlet.2018.02.016
      [13] VahidMohammadi A, Kayali E, Orangi J, et al. Techniques for MXene delamination into single-layer flakes // 2D Metal Carbides and Nitrides (MXenes). Cham: Springer, 2019: 177
      [14] Feng W L, Luo H, Wang Y, et al. Ultrasonic assisted etching and delaminating of Ti<sub>3</sub>C<sub>2</sub> Mxene. <italic>Ceram Int</italic>, 2018, 44(6): 7084 doi: 10.1016/j.ceramint.2018.01.147
      [15] Dong Y C, Chertopalov S, Maleski K, et al. Saturable absorption in 2D Ti<sub>3</sub>C<sub>2</sub> MXene thin films for passive photonic diodes. <italic>Adv Mater</italic>, 2018, 30(10): 1705714 doi: 10.1002/adma.201705714
      [16] Wang H Y, Shao X Z, Wang L, et al. Effect of Ce doping into V<sub>2</sub>O<sub>5</sub>-WO<sub>3</sub>/TiO<sub>2</sub> catalysts on the selective catalytic reduction of NO<sub><italic>x</italic></sub> by NH<sub>3</sub>. <italic>J Rare Met</italic>, 2017, 42(1): 53
      [17] Wang D S, Li F, Lian R Q, et al. A general atomic surface modification strategy for improving anchoring and electrocatalysis behavior of Ti<sub>3</sub>C<sub>2</sub>T<sub>2</sub> MXene in lithium–sulfur batteries. <italic>ACS Nano</italic>, 2019, 13(10): 11078 doi: 10.1021/acsnano.9b03412
      [18] Zhu Y, Rajoua K, Le Vot S, et al. Modifications of MXene layers for supercapacitors. <italic>Nano Energy</italic>, 2020, 73: 104734
      [19] Zhang Y, Liu K Y, Zhang W, et al. Charge-discharge process of a weak-crystalline manganese dioxide supercapacitor. <italic>J Univ Sci Technol Beijing</italic>, 2008, 30(7): 775 doi: 10.3321/j.issn:1001-053X.2008.07.015

      張瑩, 劉開宇, 張偉, 等. 弱結晶二氧化錳超級電容器充放電分析. 北京科技大學學報, 2008, 30(7):775 doi: 10.3321/j.issn:1001-053X.2008.07.015
      [20] Yu P, Cao G J, Yi S, et al. Binder-free 2D titanium carbide (MXene)/carbon nanotube composites for high-performance lithium-ion capacitors. <italic>Nanoscale</italic>, 2018, 10(13): 5906 doi: 10.1039/C8NR00380G
      [21] Liu C, Wu J C, Zhou H T, et al. Great enhancement of carbon energy storage through narrow pores and hydrogen-containing functional groups for aqueous Zn-ion hybrid supercapacitor. <italic>Molecules</italic>, 2019, 24(14): 2589 doi: 10.3390/molecules24142589
      [22] Levitt A S, Alhabeb M, Hatter C B, et al. Electrospun MXene/carbon nanofibers as supercapacitor electrodes. <italic>J Mater Chem A</italic>, 2019, 7(1): 269 doi: 10.1039/C8TA09810G
      [23] Li J M, Levitt A, Kurra N, et al. MXene-conducting polymer electrochromic microsupercapacitors. <italic>Energy Storage Mater</italic>, 2019, 20: 455 doi: 10.1016/j.ensm.2019.04.028
      [24] Bao L H, Zang J F, Li X D. Flexible Zn<sub>2</sub>SnO<sub>4</sub>/MnO<sub>2</sub> core/shell nanocable-carbon microfiber hybrid composites for high-performance supercapacitor electrodes. <italic>Nano Lett</italic>, 2011, 11(3): 1215 doi: 10.1021/nl104205s
      [25] Chang J K, Huang C H, Lee M T, et al. Physicochemical factors that affect the pseudocapacitance and cyclic stability of Mn oxide electrodes. <italic>Electrochim Acta</italic>, 2009, 54(12): 3278 doi: 10.1016/j.electacta.2008.12.042
      [26] Shen L, Zhou X Y, Zhang X L, et al. Carbon-intercalated Ti<sub>3</sub>C<sub>2</sub>T<sub><italic>x</italic></sub> MXene for high-performance electrochemical energy storage. <italic>J Mater Chem A</italic>, 2018, 6(46): 23513 doi: 10.1039/C8TA09600G
      [27] Yoon Y, Lee M, Kim S K, et al. A strategy for synthesis of carbon nitride induced chemically doped 2D MXene for high-performance supercapacitor electrodes. <italic>Adv Energy Mater</italic>, 2018, 8(15): 1703173 doi: 10.1002/aenm.201703173
      [28] Mojtabavi M, VahidMohammadi A, Liang W T, et al. Single-molecule sensing using nanopores in two-dimensional transition metal carbide (MXene) membranes. <italic>ACS Nano</italic>, 2019, 13(3): 3042 doi: 10.1021/acsnano.8b08017
      [29] Boota M, Gogotsi Y. MXene-conducting polymer asymmetric pseudocapacitors. <italic>Adv Energy Mater</italic>, 2019, 9(7): 1802917 doi: 10.1002/aenm.201802917
    • 加載中
    圖(10)
    計量
    • 文章訪問數:  5874
    • HTML全文瀏覽量:  1499
    • PDF下載量:  166
    • 被引次數: 0
    出版歷程
    • 收稿日期:  2019-11-07
    • 刊出日期:  2020-09-11

    目錄

      /

      返回文章
      返回