• 《工程索引》(EI)刊源期刊
    • 中文核心期刊
    • 中國科技論文統計源期刊
    • 中國科學引文數據庫來源期刊

    留言板

    尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

    姓名
    郵箱
    手機號碼
    標題
    留言內容
    驗證碼

    感應加熱溫度對冷?熱軋制成形鈦/鋼復合板界面的影響

    白于良 李晶琨 劉雪峰 王懷柳 代廣霖

    白于良, 李晶琨, 劉雪峰, 王懷柳, 代廣霖. 感應加熱溫度對冷?熱軋制成形鈦/鋼復合板界面的影響[J]. 工程科學學報, 2020, 42(12): 1639-1646. doi: 10.13374/j.issn2095-9389.2019.12.11.001
    引用本文: 白于良, 李晶琨, 劉雪峰, 王懷柳, 代廣霖. 感應加熱溫度對冷?熱軋制成形鈦/鋼復合板界面的影響[J]. 工程科學學報, 2020, 42(12): 1639-1646. doi: 10.13374/j.issn2095-9389.2019.12.11.001
    BAI Yu-liang, LI Jing-kun, LIU Xue-feng, WANG Huai-liu, DAI Guang-lin. Effect of induction heating temperature on the interface of cold?hot-rolled titanium/steel composite plates[J]. Chinese Journal of Engineering, 2020, 42(12): 1639-1646. doi: 10.13374/j.issn2095-9389.2019.12.11.001
    Citation: BAI Yu-liang, LI Jing-kun, LIU Xue-feng, WANG Huai-liu, DAI Guang-lin. Effect of induction heating temperature on the interface of cold?hot-rolled titanium/steel composite plates[J]. Chinese Journal of Engineering, 2020, 42(12): 1639-1646. doi: 10.13374/j.issn2095-9389.2019.12.11.001

    感應加熱溫度對冷?熱軋制成形鈦/鋼復合板界面的影響

    doi: 10.13374/j.issn2095-9389.2019.12.11.001
    基金項目: 國家重點實驗室自主研究資助項目(2014Z-05)
    詳細信息
      通訊作者:

      E-mail: liuxuefengbj@163.com

    • 中圖分類號: TG335.81

    Effect of induction heating temperature on the interface of cold?hot-rolled titanium/steel composite plates

    More Information
    • 摘要: 對鈦/鋼組坯進行冷軋預復合成形,將鈦/鋼預復合板感應加熱至熱軋溫度后單道次熱軋成形制備了鈦/鋼復合板,研究了感應加熱溫度對鈦/鋼復合板的界面組織和界面結合性能的影響。結果表明,冷?熱軋制復合法制備的鈦/鋼復合板的界面結合緊密,沒有孔洞和間隙。鈦/鋼復合板由于感應加熱和熱軋的時間較短(<5 s),鈦/鋼界面僅有少量硬化層碎塊,沒有金屬間化合物析出。鈦/鋼復合板的界面Ti和Fe元素擴散層寬度隨感應加熱溫度增大而增大,950 ℃時界面擴散層寬度達到8 μm。在感應加熱溫度為750 ~ 950 ℃的條件下,鈦/鋼復合板的界面結合良好。

       

    • 圖  1  冷–熱軋制成形鈦/鋼復合板工藝流程示意圖

      Figure  1.  Process diagram of cold–hot roll bonded titanium/steel composite plates

      圖  2  彎曲實驗示意圖

      Figure  2.  Schematic of the three-point bending test

      圖  3  不同感應加熱溫度下制備的鈦/鋼復合板的界面組織形貌。(a) 750 ℃;(b) 950 ℃

      Figure  3.  Interfacial microstructure of titanium/steel composite plates prepared at different induction heating temperatures: (a) 750 ℃; (b) 950 ℃

      圖  4  鈦/鋼復合板界面的X射線衍射物相圖譜

      Figure  4.  XRD phase patterns of the longitudinal section of titanium/steel composite plates for different induction heating temperatures

      圖  5  不同感應加熱溫度下制備的鈦/鋼復合板界面附近的硬度分布

      Figure  5.  Hardness distribution near the interface of titanium/steel composite plates prepared at different induction heating temperatures

      圖  6  不同感應加熱溫度下制備的鈦/鋼復合板界面處的顯微硬度壓痕形貌。(a)750 ℃;(b)850 ℃;(c)950 ℃

      Figure  6.  Interfacial hardness indentation morphology of titanium/steel composite plates prepared at different induction heating temperatures: (a) 750 ℃; (b) 850 ℃; (c) 950 ℃

      圖  7  不同感應加熱溫度下制備的鈦/鋼復合板的界面元素擴散距離

      Figure  7.  Interfacial element diffusion distances of titanium steel composite plates prepared at different induction heating temperatures

      圖  8  不同感應加熱溫度下制備的鈦/鋼復合板的裂紋萌生時的彎曲角

      Figure  8.  Bending angles during the crack initiation of titanium steel composite plates prepared at different induction heating temperatures

      圖  9  不同感應加熱溫度下制備的鈦/鋼復合板的界面裂紋萌生形貌。(a)750 ℃;(b)850 ℃;(c)950 ℃

      Figure  9.  Interface morphology during the crack initiation of titanium/steel composite plates prepared at different induction heating temperatures: (a) 750 ℃; (b) 850 ℃; (c) 950 ℃

      圖  10  不同感應加熱溫度下制備的鈦/鋼復合板剝離面形貌。(a,b)750 ℃;(c,d)850 ℃;(e,f)950 ℃

      Figure  10.  Peeling surface microstructure of titanium/steel composite plates prepared at different induction heating temperatures: (a, b) 750 ℃; (c, d) 850 ℃; (e, f) 950 ℃

      表  1  原材料的化學成分(質量分數)

      Table  1.   Chemical composition of experimental TA2 and Q235 %

      TA2Q235
      FeCNHOOthersTiCSiMnSPFe
      <0.30<0.08<0.03<0.015<0.25<0.4Bal.0.12–0.200.19–0.300.30–0.70≤0.45≤0.045Bal.
      下載: 導出CSV

      表  2  圖10中各點的元素含量(原子數分數)

      Table  2.   Element composition of each point in Fig. 10 %

      PointTiFeC
      183.571.7314.7
      24.1395.87
      381.970.6517.38
      40.8361.1738.01
      592.041.516.54
      60.4988.8310.68
      下載: 導出CSV
      中文字幕在线观看
    • [1] Yan L. Behaviotsard applications of Ti/steel composite sheets. China Tit Ind, 2011(3): 12

      閆力. 鈦鋼復合板的特點及應用領域. 中國鈦業, 2011(3):12
      [2] Hu J, Xie R, Du X B. Processing technology of titanium steel clad plate and its application in ship and ocean engineering. Jiangsu Ship, 2016, 33(6): 6 doi: 10.3969/j.issn.1001-5388.2016.06.002

      胡杰, 謝榮, 杜訓柏. 鈦鋼復合板加工技術及其在船海工程中的應用. 江蘇船舶, 2016, 33(6):6 doi: 10.3969/j.issn.1001-5388.2016.06.002
      [3] Prasanthi T N, Ravikirana C S, Saroja S. Explosive cladding and post-weld heat treatment of mild steel and titanium. Mater Des, 2016, 93: 180 doi: 10.1016/j.matdes.2015.12.120
      [4] Liu J X, Zhao A M, Jiang H T, et al. Microstructure features of the steel side in TA2-Q235B explosive clad plates. J Univ Sci Technol Beijing, 2012, 34(6): 671

      劉繼雄, 趙愛民, 江海濤, 等. TA2-Q235B爆炸復合板鋼側組織特征. 北京科技大學學報, 2012, 34(6):671
      [5] Xie M X, Zhang L J, Zhang G F, et al. Microstructure and mechanical properties of CP-Ti/X65 bimetallic sheets fabricated by explosive welding and hot rolling. Mater Des, 2015, 87: 181 doi: 10.1016/j.matdes.2015.08.021
      [6] Jiang H T, Yan X Q, Liu J X, et al. Effect of heat treatment on microstructure and mechanical property of Ti-steel explosive-rolling clad plate. Trans Nonferrous Met Soc China, 2014, 24(3): 697 doi: 10.1016/S1003-6326(14)63113-7
      [7] Kundu S, Sam S, Mishra B, et al. Diffusion bonding of microduplex stainless steel and Ti alloy with and without interlayer: interface microstructure and strength properties. Metall Mater Trans A, 2014, 45(1): 371 doi: 10.1007/s11661-013-1977-3
      [8] Song T F, Jiang X S, Shao Z Y, et al. Microstructure and mechanical properties of vacuum diffusion bonded joints between Ti–6Al–4V titanium alloy and AISI316L stainless steel using Cu/Nb multi-interlayer. Vacuum, 2017, 145: 68 doi: 10.1016/j.vacuum.2017.08.017
      [9] Yu C, Xiao H, Yu H, et al. Mechanical properties and interfacial structure of hot-roll bonding TA2/Q235B plate using DT4 interlayer. Mater Sci Eng A, 2017, 695: 120 doi: 10.1016/j.msea.2017.03.118
      [10] Ma Z X, Hu J, Li D F, et al. Overview of research and manufacture of layer-metal composite plate. Chin J Rare Met, 2003, 27(6): 799 doi: 10.3969/j.issn.0258-7076.2003.06.030

      馬志新, 胡捷, 李德富, 等. 層狀金屬復合板的研究和生產現狀. 稀有金屬, 2003, 27(6):799 doi: 10.3969/j.issn.0258-7076.2003.06.030
      [11] Chai X Y, Pan T, Chai F, et al. Interlayer engineering for titanium clad steel by hot roll bonding. J Iron Steel Res Int, 2018, 25(7): 739 doi: 10.1007/s42243-018-0106-3
      [12] Liu J G, Cai W C, Liu L, et al. Investigation of interfacial structure and mechanical properties of titanium clad steel sheets prepared by a brazing-rolling process. Mater Sci Eng A, 2017, 703: 386 doi: 10.1016/j.msea.2017.06.095
      [13] Wang J Z, Yan X B, Wang W Q, et al. Summarization of the rolling Ti-steel composite plates process. Mater Rev, 2005, 19(4): 61 doi: 10.3321/j.issn:1005-023X.2005.04.017

      王敬忠, 顏學柏, 王韋琪, 等. 軋制鈦?鋼復合板工藝綜述. 材料導報, 2005, 19(4):61 doi: 10.3321/j.issn:1005-023X.2005.04.017
      [14] Luo Z A, Wang G L, Xie G M, et al. Interfacial microstructure and properties of a vacuum hot roll-bonded titanium-stainless steel clad plate with a niobium interlayer. Acta Metall Sin (Engl Lett), 2013, 26(6): 754 doi: 10.1007/s40195-013-0283-9
      [15] Yu C, Qi Z C, Yu H, et al. Microstructural and mechanical properties of hot roll bonded titanium alloy/low carbon steel plate. J Mater Eng Perform, 2018, 27(4): 1664 doi: 10.1007/s11665-018-3279-9
      [16] Lee M K, Lee J G, Choi Y H, et al. Interlayer engineering for dissimilar bonding of titanium to stainless steel. Mater Lett, 2010, 64(9): 1105 doi: 10.1016/j.matlet.2010.02.024
      [17] Ke S R, Xu X H, Xiang Z D. Feasibility of cladding Ti to carbon steel by diffusion bonding followed by hot-rolling // Proceedings of the 5th International Conference on Advanced Design and Manufacturing Engineering. Shenzhen, 2015: 1961
      [18] Jiang H T, Yan X Q, Liu J X, et al. Diffusion behavior and mathematical model of Ti-steel explosive clad plate during heat treatment. Rare Met Mater Eng, 2015, 44(4): 972

      江海濤, 閻曉倩, 劉繼雄, 等. 鈦?鋼爆炸復合板熱處理過程中的擴散行為及數學模型. 稀有金屬材料與工程, 2015, 44(4):972
      [19] Chai X Y, Shi Z R, Chai F, et al. Effect of heating temperature on microstructure and mechanical properties of titanium clad steel by hot roll bonding. Rare Met Mater Eng, 2019, 48(8): 2701

      柴希陽, 師仲然, 柴峰, 等. 加熱溫度對軋制鈦/鋼復合板組織與性能的影響. 稀有金屬材料與工程, 2019, 48(8):2701
      [20] Yang D H, Luo Z A, Xie G M, et al. Effect of vacuum level on microstructure and mechanical properties of titanium-steel vacuum roll clad plates. J Iron Steel Res Int, 2018, 25(1): 72 doi: 10.1007/s42243-017-0009-8
      [21] Yu W, Zhang L, Chen Y L, et al. Effect of rolling temperature on the properties of TA1/Q345 composite plates. J Univ Sci Technol Beijing, 2013, 35(1): 97

      余偉, 張蕾, 陳銀莉, 等. 軋制溫度對TA1/Q345復合板性能的影響. 北京科技大學學報, 2013, 35(1):97
      [22] Xu W, Zhu M, Guo S L, et al. Interfaces of titanium-aluminum clad sheet and affecting to processing performance. Chin J Rare Met, 2011, 35(3): 342 doi: 10.3969/j.issn.0258-7076.2011.03.005

      徐衛, 朱明, 郭勝利, 等. 鈦?鋁復合板界面組織及其對加工性能的影響. 稀有金屬, 2011, 35(3):342 doi: 10.3969/j.issn.0258-7076.2011.03.005
      [23] Kundu S, Chatterjee S. Diffusion bonding between commercially pure titanium and micro-duplex stainless steel. Mater Sci Eng A, 2008, 480(1-2): 316 doi: 10.1016/j.msea.2007.07.033
      [24] Jiang H T, Wu B, Zhang Y, et al. Interfacial microstructure and deformation mechanism of Ti-steel clad plate under high strain rate. Chin J Eng, 2017, 39(7): 1070

      江海濤, 吳波, 張韻, 等. 高應變速率下鈦?鋼復合板界面組織特征及變形機制. 工程科學學報, 2017, 39(7):1070
      [25] Deng Y Q, Sheng G M, Xu C. Evaluation of the microstructure and mechanical properties of diffusion bonded joints of titanium to stainless steel with a pure silver interlayer. Mater Des, 2013, 46: 84 doi: 10.1016/j.matdes.2012.09.058
    • 加載中
    圖(10) / 表(2)
    計量
    • 文章訪問數:  1676
    • HTML全文瀏覽量:  759
    • PDF下載量:  60
    • 被引次數: 0
    出版歷程
    • 收稿日期:  2019-12-11
    • 刊出日期:  2020-12-25

    目錄

      /

      返回文章
      返回