• 《工程索引》(EI)刊源期刊
    • 中文核心期刊
    • 中國科技論文統計源期刊
    • 中國科學引文數據庫來源期刊

    留言板

    尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

    姓名
    郵箱
    手機號碼
    標題
    留言內容
    驗證碼

    噴嘴噴淋距離對連鑄小方坯二冷均勻性的影響

    韓延申 張江山 鄒雷雷 曾凡政 管敏 劉青

    韓延申, 張江山, 鄒雷雷, 曾凡政, 管敏, 劉青. 噴嘴噴淋距離對連鑄小方坯二冷均勻性的影響[J]. 工程科學學報, 2020, 42(6): 739-746. doi: 10.13374/j.issn2095-9389.2019.12.26.001
    引用本文: 韓延申, 張江山, 鄒雷雷, 曾凡政, 管敏, 劉青. 噴嘴噴淋距離對連鑄小方坯二冷均勻性的影響[J]. 工程科學學報, 2020, 42(6): 739-746. doi: 10.13374/j.issn2095-9389.2019.12.26.001
    HAN Yan-shen, ZHANG Jiang-shan, ZOU Lei-lei, ZENG Fan-zheng, GUAN Min, LIU Qing. Effect of nozzle spray distance on the secondary cooling uniformity of continuous casting billet[J]. Chinese Journal of Engineering, 2020, 42(6): 739-746. doi: 10.13374/j.issn2095-9389.2019.12.26.001
    Citation: HAN Yan-shen, ZHANG Jiang-shan, ZOU Lei-lei, ZENG Fan-zheng, GUAN Min, LIU Qing. Effect of nozzle spray distance on the secondary cooling uniformity of continuous casting billet[J]. Chinese Journal of Engineering, 2020, 42(6): 739-746. doi: 10.13374/j.issn2095-9389.2019.12.26.001

    噴嘴噴淋距離對連鑄小方坯二冷均勻性的影響

    doi: 10.13374/j.issn2095-9389.2019.12.26.001
    基金項目: 江蘇省雙創人才資助項目(2016A426)
    詳細信息
      通訊作者:

      E-mail: qliu@ustb.edu.cn

    • 中圖分類號: TF777.3

    Effect of nozzle spray distance on the secondary cooling uniformity of continuous casting billet

    More Information
    • 摘要: 研究了不同噴淋距離下連鑄小方坯二冷噴嘴的水量分布,建立了凝固傳熱模型分析了82B鋼連鑄坯的熱行為。該模型特別考慮了二冷區鑄坯表面寬度方向的水流密度分布,并根據鑄坯表面測溫結果進行了模型校正。采用凝固傳熱模型研究了噴嘴噴淋距離對連鑄二冷均勻性的影響。結果表明:噴嘴噴淋距離的增加有助于提高二冷水橫向分布的均勻性,導致鑄坯表面溫度橫向均勻性降低、縱向均勻性提高。這些效果有助于改善鑄坯內部裂紋,但是會對角部裂紋產生不利影響。在二冷區前段噴嘴采用低噴淋距離,二冷區末段采用高噴淋距離,既可以提高鑄坯角部溫度,又能降低表面最大回溫速率,有助于同時改善連鑄坯角部和內部裂紋。在此基礎上,提出了一種連鑄小方坯二冷噴嘴布置方式,即二冷區每段噴嘴噴淋距離沿拉坯方向逐漸增加,該方法有助于提高連鑄坯“縱?橫”冷卻均勻性。

       

    • 圖  1  連鑄機示意圖

      Figure  1.  Schematic of the continuous caster

      圖  2  噴淋測試設備示意圖

      Figure  2.  Schematic of the spray test apparatus

      圖  3  噴嘴水量分布測量

      Figure  3.  Measurement of water flux distribution of the nozzle

      圖  4  切片法示意圖和幾何模型

      Figure  4.  Schematic of the slice moving method and geometric model

      圖  5  82B鋼的熱物性參數

      Figure  5.  Thermal–physical properties of 82B steel

      圖  6  足輥區水量橫向分布。(a)單個噴嘴;(b)兩個噴嘴

      Figure  6.  Water flux distribution in the foot-roller zone: (a) one nozzle; (b) two nozzles

      圖  7  不同噴淋距離下噴嘴水量分布。(a)噴嘴B,100 mm;(b)噴嘴B,125 mm;(c)噴嘴B,150 mm;(d)噴嘴C,100 mm;(e)噴嘴C,125 mm;(f)噴嘴C,150 mm

      Figure  7.  Water flux distributions of the nozzles under different spray distances: (a) nozzle B, 100 mm; (b) nozzle B, 125 mm; (c) nozzle B, 150 mm; (d) nozzle C, 100 mm; (e) nozzle C, 125 mm; (f) nozzle C, 150 mm

      圖  8  表面中心測量溫度和模擬溫度對比

      Figure  8.  Comparisons of the measured and simulated temperatures of the surface center

      圖  9  噴嘴在不同噴淋距離下連鑄坯角部和表面中心溫度變化。(a)100 mm;(b)125 mm;(c)150 mm

      Figure  9.  Temperature variations of the billet corner and surface center under different nozzle spray distances: (a) 100 mm; (b) 125 mm; (c) 150 mm

      圖  10  不同噴嘴噴淋距離下鑄坯中心固相率變化

      Figure  10.  Variation of the central solid fraction of the billet under different nozzle spray distances

      圖  11  鑄坯表面溫度和中心固相率變化

      Figure  11.  Variations of the surface temperature and central solid fraction of the billet

      圖  12  噴嘴布置方式示意圖

      Figure  12.  Schematic of the nozzle arrangement

      表  1  82B鋼的主要化學成分(質量分數)

      Table  1.   Main chemical composition of 82B steel %

      CSiMnPS
      0.820.200.730.0170.004
      下載: 導出CSV

      表  2  現行工藝下噴嘴的噴淋距離和水壓值

      Table  2.   Spray distance and water pressure of the nozzles under the current process

      Nozzle typeSpray distance/mmWater pressure/MPa
      A1250.40
      B1250.80
      C1250.60
      下載: 導出CSV

      表  3  82B鋼主要連鑄工藝參數

      Table  3.   Main casting parameters of 82B steel

      ItemValue
      Sectional dimension/(mm×mm)150×150
      Casting speed/(m·min?1)1.8
      Pouring temperature/℃1503
      Water flux of mold cooling/(m3·h?1)112
      Temperature difference between inlet and
      outlet of mold water/℃
      6.02
      Water flux of secondary cooling/ (m3·h?1)35.8
      Water temperature/℃35
      Ambient temperature/℃25
      下載: 導出CSV
      中文字幕在线观看
    • [1] Zhang F Q, Wang X H. Simulation of uneven cooling along the width of continuously cast slab in secondary cooling zone. Iron Steel, 2006, 41(9): 30 doi: 10.3321/j.issn:0449-749X.2006.09.007

      張富強, 王新華. 連鑄板坯二冷區寬度方向不均勻冷卻的研究. 鋼鐵, 2006, 41(9):30 doi: 10.3321/j.issn:0449-749X.2006.09.007
      [2] Assuncao C, Tavares R, Oliveira G. Improvement in secondary cooling of continuous casting of round billets through analysis of heat flux distribution. Ironmaking Steelmaking, 2015, 42(1): 1 doi: 10.1179/1743281214Y.0000000190
      [3] Brimacombe J K, Sorimachi K. Crack formation in the continuous casting of steel. Metall Trans B, 1977, 8(2): 489 doi: 10.1007/BF02696937
      [4] Han C J, Cai K K, Zhao J G, et al. Solidification heat transfer process and control for secondary cooling zone of slab casting. J Univ Sci Technol Beijing, 1999, 21(6): 523 doi: 10.3321/j.issn:1001-053X.1999.06.004

      韓傳基, 蔡開科, 趙家貴, 等. 板坯連鑄二冷區凝固傳熱過程與控制. 北京科技大學學報, 1999, 21(6):523 doi: 10.3321/j.issn:1001-053X.1999.06.004
      [5] Min Y, Liu C J, Wang D Y, et al. Prediction of equiaxed crystal ratio of continuous casting round billet of 37Mn5 steel. J Iron Steel Res, 2011, 23(10): 38

      閔義, 劉承軍, 王德永, 等. 37Mn5連鑄圓坯中心等軸晶率預測. 鋼鐵研究學報, 2011, 23(10):38
      [6] Zeng J, Chen W Q. Effect of secondary cooling conditions on solidification structure and central macrosegregation in continuously cast high-carbon rectangular billet. High Temp Mater Processes, 2015, 34(6): 577
      [7] Dou K, Yang Z G, Liu Q, et al. Influence of secondary cooling mode on solidification structure and macro-segregation behavior for high-carbon continuous casting bloom. High Temp Mater Process, 2017, 36(7): 741 doi: 10.1515/htmp-2016-0022
      [8] Fan H L, Long M J, Yu S, et al. Uniform secondary cooling pattern for minimizing surface reheating of the strand during round bloom continuous casting. JOM, 2018, 70(2): 237 doi: 10.1007/s11837-017-2679-x
      [9] Ma J C, Wang B, Zhang D, et al. Optimization of secondary cooling water distribution for improving the billet quality for a small caster. ISIJ Int, 2018, 58(5): 915 doi: 10.2355/isijinternational.ISIJINT-2017-711
      [10] Wang X Y, Liu Q, Wang B, et al. Optimal control of secondary cooling for medium thickness slab continuous casting. Ironmaking Steelmaking, 2011, 38(7): 552 doi: 10.1179/1743281211Y.0000000031
      [11] Wang X Y, Liu Q, Hu Z G, et al. Influence of nozzle layouts on the secondary cooling effect of medium thickness slabs in continuous casting. J Univ Sci Technol Beijing, 2010, 32(8): 1064

      王先勇, 劉青, 胡志剛, 等. 噴嘴布置方式對中厚板坯連鑄二次冷卻效果的影響. 北京科技大學學報, 2010, 32(8):1064
      [12] Long M J, Chen D F. Study on mitigating center macro-segregation during steel continuous casting process. Steel Res Int, 2011, 82(7): 847 doi: 10.1002/srin.201100085
      [13] Long M J, Chen D F, Zhang L F, et al. A mathematical model for mitigating centerline macro segregation in continuous casting slab. Metalurgia Int, 2011, 16(10): 19
      [14] Ji C, Luo S, Zhu M Y, et al. Uneven solidification during wide-thick slab continuous casting process and its influence on soft reduction zone. ISIJ Int, 2014, 54(1): 103 doi: 10.2355/isijinternational.54.103
      [15] Ji C, Cai Z Z, Wang W L, et al. Effect of transverse distribution of secondary cooling water on corner cracks in wide thick slab continuous casting process. Ironmaking Steelmaking, 2014, 41(5): 360 doi: 10.1179/1743281213Y.0000000161
      [16] Zhan X H, Mao J H, Yan J W, et al. Selection and layout of nozzle for ultra-thick slab continuous caster. Iron Steel, 2014, 49(5): 42

      占賢輝, 毛敬華, 閻建武, 等. 特厚板坯連鑄機二冷區噴嘴選型與布置. 鋼鐵, 2014, 49(5):42
      [17] Wang B, Ji Z P, Liu W H, et al. Application of hot strength and ductility test to optimization of secondary cooling system in billet continuous casting process. J Iron Steel Res Int, 2008, 15(4): 16 doi: 10.1016/S1006-706X(08)60137-5
      [18] Chaudhuri S, Singh R K, Patwari K, et al. Design and implementation of an automated secondary cooling system for the continuous casting of billets. ISA Trans, 2010, 49(1): 121 doi: 10.1016/j.isatra.2009.09.005
      [19] Ramírez-López A, Aguilar-López R, Palomar-Pardavé M, et al. Simulation of heat transfer in steel billets during continuous casting. Int J Miner Metall Mater, 2010, 17(4): 403 doi: 10.1007/s12613-010-0333-5
      [20] Yu Y, Luo X C, Zhang H X, et al. Dynamic optimization method of secondary cooling water quantity in continuous casting based on three-dimensional transient nonlinear convective heat transfer equation. Appl Therm Eng, 2019, 160: 113988 doi: 10.1016/j.applthermaleng.2019.113988
      [21] Han Y S, Wang X Y, Zhang J S, et al. Comparison of transverse uniform and non-uniform secondary cooling strategies on heat transfer and solidification structure of continuous-casting billet. Metals, 2019, 9(5): 543 doi: 10.3390/met9050543
      [22] Han Y S, Yan W, Zhang J S, et al. Optimization of thermal soft reduction on continuous-casting billet. ISIJ Int, 2020, 60(1): 106 doi: 10.2355/isijinternational.ISIJINT-2019-409
      [23] Nozaki T, Matsuno J, Murata K, et al. A secondary cooling pattern for preventing surface cracks of continuous casting slab. Trans Iron Steel Inst Jpn, 1978, 18(6): 330 doi: 10.2355/isijinternational1966.18.330
      [24] Sediako D, Sediako O, Lin K J. Some aspects of thermal analysis and technology upgrading in steel continuous casting. Can Metall Q, 1999, 38(5): 377 doi: 10.1179/cmq.1999.38.5.377
      [25] Kulkarni M S, Subash Babu A. Optimization of continuous casting using simulation. Mater Manuf Processes, 2005, 20(4): 595 doi: 10.1081/AMP-200041874
    • 加載中
    圖(12) / 表(3)
    計量
    • 文章訪問數:  1454
    • HTML全文瀏覽量:  1083
    • PDF下載量:  74
    • 被引次數: 0
    出版歷程
    • 收稿日期:  2019-12-26
    • 刊出日期:  2020-06-01

    目錄

      /

      返回文章
      返回