• 《工程索引》(EI)刊源期刊
    • 中文核心期刊
    • 中國科技論文統計源期刊
    • 中國科學引文數據庫來源期刊

    留言板

    尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

    姓名
    郵箱
    手機號碼
    標題
    留言內容
    驗證碼

    礦石顆粒級配對堆浸體系三維孔隙結構的影響

    尹升華 陳勛 劉超 王雷鳴 嚴榮富

    尹升華, 陳勛, 劉超, 王雷鳴, 嚴榮富. 礦石顆粒級配對堆浸體系三維孔隙結構的影響[J]. 工程科學學報, 2020, 42(8): 972-979. doi: 10.13374/j.issn2095-9389.2020.01.17.002
    引用本文: 尹升華, 陳勛, 劉超, 王雷鳴, 嚴榮富. 礦石顆粒級配對堆浸體系三維孔隙結構的影響[J]. 工程科學學報, 2020, 42(8): 972-979. doi: 10.13374/j.issn2095-9389.2020.01.17.002
    YIN Sheng-hua, CHEN Xun, LIU Chao, WANG Lei-ming, YAN Rong-fu. Effects of ore size distribution on the pore structure characteristics of packed ore beds[J]. Chinese Journal of Engineering, 2020, 42(8): 972-979. doi: 10.13374/j.issn2095-9389.2020.01.17.002
    Citation: YIN Sheng-hua, CHEN Xun, LIU Chao, WANG Lei-ming, YAN Rong-fu. Effects of ore size distribution on the pore structure characteristics of packed ore beds[J]. Chinese Journal of Engineering, 2020, 42(8): 972-979. doi: 10.13374/j.issn2095-9389.2020.01.17.002

    礦石顆粒級配對堆浸體系三維孔隙結構的影響

    doi: 10.13374/j.issn2095-9389.2020.01.17.002
    基金項目: 國家優秀青年科學基金資助項目(51722401);中央高校基本科研業務費專項資金資助項目(FRF-TP-18-003C1);國家自然科學基金重點資助項目(51734001)
    詳細信息
      通訊作者:

      E-mail:ckchenxun@163.com

    • 中圖分類號: TD853

    Effects of ore size distribution on the pore structure characteristics of packed ore beds

    More Information
    • 摘要: 為研究堆浸體系礦石粒徑分布對孔隙結構的影響,對不同級配礦巖散體構成的浸柱開展顯微CT掃描測試,得到浸柱內部結構圖像。通過閾值分割算法對孔隙結構進行提取,建立浸柱三維孔隙模型,對浸柱體孔隙率和面孔隙率的空間分布特征進行研究。利用最大球算法構建浸柱孔隙網絡模型,進而分析礦石粒徑分布對孔喉半徑、喉道長度、孔喉體積、形狀因子和配位數等參數的影響規律。結果表明:礦石顆粒級配性越好,礦堆孔隙率越低;礦石粒徑越均勻,礦堆不同區域孔隙率差異越小;礦石粒徑分布對孔隙尺寸和連通性影響較為顯著,對孔喉形狀因子影響較小。隨著細顆粒礦石的減少,大孔隙增多,孔喉半徑、喉道長度和孔喉體積相應增大;隨著礦石粒徑均勻性的增加,堆浸體系中孤立孔隙所占比例減少,高配位數孔隙所占比例增大,即礦堆內的孔隙空間具有更好的連通性。

       

    • 圖  1  礦石粒徑分布曲線

      Figure  1.  Particle size distribution in ore columns

      圖  2  浸柱CT掃描圖像

      Figure  2.  CT scanning images of ore columns

      圖  3  浸柱三維圖像。(a)浸柱A;(b)浸柱B

      Figure  3.  3D reconstructed ore columns: (a) column A; (b) column B

      圖  4  浸柱三維孔隙結構圖像。(a)浸柱A;(b)浸柱B

      Figure  4.  3D pore image of ore columns: (a) column A; (b) column B

      圖  5  浸柱分區示意圖

      Figure  5.  Schematic showing volume division of samples

      圖  6  浸柱不同區域相對孔隙率變化

      Figure  6.  Relative porosity of different regions within ore columns

      圖  7  面孔隙率隨浸柱高度變化曲線

      Figure  7.  Distribution of 2D porosity along ore column height direction

      圖  8  相對面孔隙率隨浸柱高度變化曲線

      Figure  8.  Distribution of relative 2D porosity along ore column height direction

      圖  9  浸柱孔隙網絡模型。(a)浸柱A;(b)浸柱B

      Figure  9.  Pore network model of ore columns: (a) column A; (b) column B

      圖  10  孔喉半徑分布曲線。(a)孔隙;(b)喉道

      Figure  10.  Frequency distribution of radius: (a) pore; (b) throat

      圖  11  喉道長度分布曲線

      Figure  11.  Frequency distribution of throat length

      圖  12  孔喉體積分布曲線。(a)孔隙;(b)喉道

      Figure  12.  Frequency distribution of pore volume: (a) pore; (b) throat

      圖  13  孔喉形狀因子分布曲線。(a)孔隙;(b)喉道

      Figure  13.  Frequency distribution of shape factor: (a) pore; (b) throat

      圖  14  孔隙配位數分布曲線

      Figure  14.  Frequency distribution of coordination number

      中文字幕在线观看
    • [1] Ilankoon I M S K, Tang Y, Ghorbani Y, et al. The current state and future directions of percolation leaching in the Chinese mining industry: Challenges and opportunities. <italic>Miner Eng</italic>, 2018, 125: 206 doi: 10.1016/j.mineng.2018.06.006
      [2] Yin S H, Wang L M, Kabwe E, et al. Copper bioleaching in China: review and prospect. <italic>Minerals</italic>, 2018, 8(2): 32 doi: 10.3390/min8020032
      [3] Petersen J. Heap leaching as a key technology for recovery of values from low-grade ores–a brief overview. <italic>Hydrometallurgy</italic>, 2016, 165: 206 doi: 10.1016/j.hydromet.2015.09.001
      [4] Yin S H, Wang L M, Wu A X, et al. Progress of research in copper bioleaching technology in China. <italic>Chin J Eng</italic>, 2019, 41(2): 143

      尹升華;王雷鳴;吳愛祥, 等. 我國銅礦微生物浸出技術的研究進展. 工程科學學報, 2019, 41(2):143
      [5] Ghorbani Y, Franzidis J P, Petersen J. Heap leaching technology—current state, innovations, and future directions: a review. <italic>Miner Process Extract Metall Rev</italic>, 2016, 37(2): 73
      [6] Miao X X, Wu A X, Yang B H. Recent advances in heap leaching research: Characterisation and modelling. <italic>Chin J Nonferrous Met</italic>, 2018, 28(11): 2327

      繆秀秀, 吳愛祥, 楊保華. 堆浸水力學研究前沿: 結構表征與模型仿真. 中國有色金屬學報, 2018, 28(11):2327
      [7] Bouffard S C, West-Sells P G. Hydrodynamic behavior of heap leach piles: Influence of testing scale and material properties. <italic>Hydrometallurgy</italic>, 2009, 98(1-2): 136 doi: 10.1016/j.hydromet.2009.04.012
      [8] Wu A X, Wang S Y, Yang B H. Effect of particle structure on permeability of leaching dump. <italic>Min Res Dev</italic>, 2011(5): 22

      吳愛祥, 王少勇, 楊保華. 堆浸散體顆粒結構對溶浸液滲流規律的影響. 礦業研究與開發, 2011(5):22
      [9] Rong L W, Dong K J, Yu A B. Lattice-Boltzmann simulation of fluid flow through packed beds of spheres: effect of particle size distribution. <italic>Chem Eng Sci</italic>, 2014, 116: 508 doi: 10.1016/j.ces.2014.05.025
      [10] Ilankoon I M S K, Neethling S J. Hysteresis in unsaturated flow in packed beds and heaps. <italic>Miner Eng</italic>, 2012, 35: 1 doi: 10.1016/j.mineng.2012.05.007
      [11] Ding D X, Li G Y, Xu W P, et al. Regularities for saturated water seepage in loose fragmented medium. <italic>Chin J Geotech Eng</italic>, 2010, 32(2): 180

      丁德馨, 李廣悅, 徐文平, 等. 松散破碎介質中液體飽和滲流規律研究. 巖土工程學報, 2010, 32(2):180
      [12] Ilankoon I M S K, Neethling S J. Liquid spread mechanisms in packed beds and heaps. The separation of length and time scales due to particle porosity. <italic>Miner Eng</italic>, 2016, 86: 130 doi: 10.1016/j.mineng.2015.12.010
      [13] Poisson J, Chouteau M, Aubertin M, et al. Geophysical experiments to image the shallow internal structure and the moisture distribution of a mine waste rock pile. <italic>J Appl Geophys</italic>, 2009, 67(2): 179 doi: 10.1016/j.jappgeo.2008.10.011
      [14] Yin S H, Wang L M, Chen X, et al. Effect of ore size and heap porosity on capillary process inside leaching heap. <italic>Trans Nonferrous Met Soc China</italic>, 2016, 26(3): 835 doi: 10.1016/S1003-6326(16)64174-2
      [15] Ye Y J, Ding D X, Li G Y, et al. Regularities for liquid saturated seepage in uranium ore heap for heap leaching. <italic>Rock Soil Mech</italic>, 2013, 34(8): 2243

      葉勇軍, 丁德馨, 李廣悅, 等. 堆浸鈾礦堆液體飽和滲流規律的研究. 巖土力學, 2013, 34(8):2243
      [16] Dhawan N, Safarzadeh M S, Miller J D, et al. Recent advances in the application of X-ray computed tomography in the analysis of heap leaching systems. <italic>Miner Eng</italic>, 2012, 35: 75 doi: 10.1016/j.mineng.2012.03.033
      [17] Ye J B, Zhang J F, Zou W L. Influences of grain shape on pore characteristics of filled breakstone aggregate. <italic>Rock Soil Mech</italic>, 2018, 39(12): 4457

      葉加兵, 張家發, 鄒維列. 顆粒形狀對碎石料孔隙特性影響研究. 巖土力學, 2018, 39(12):4457
      [18] Nosrati A, Skinner W, Robinson D J, et al. Microstructure analysis of Ni laterite agglomerates for enhanced heap leaching. <italic>Powder Technol</italic>, 2012, 232: 106 doi: 10.1016/j.powtec.2012.08.016
      [19] Cnudde V, Boone M N. High-resolution X-ray computed tomography in geosciences: a review of the current technology and applications. <italic>Earth-Sci Rev</italic>, 2013, 123: 1 doi: 10.1016/j.earscirev.2013.04.003
      [20] Hoummady E, Golfier F, Cathelineau M, et al. A multi-analytical approach to the study of uranium-ore agglomerate structure and porosity during heap leaching. <italic>Hydrometallurgy</italic>, 2017, 171: 33 doi: 10.1016/j.hydromet.2017.04.011
      [21] Lin Q, Neethling S J, Courtois L, et al. Multi-scale quantification of leaching performance using X-ray tomography. <italic>Hydrometallurgy</italic>, 2016, 164: 265 doi: 10.1016/j.hydromet.2016.06.020
      [22] Wu A X, Yin S H, Li J F. Influential factors of permeability rule of leaching solution in ion-absorbed rare earth deposits with in situ leaching. <italic>J Cent South Univ Sci Technol</italic>, 2005, 36(3): 506

      吳愛祥, 尹升華, 李建鋒. 離子型稀土礦原地溶浸溶浸液滲流規律的影響因素. 中南大學學報: 自然科學版, 2005, 36(3):506
      [23] Liu Y F, Zheng D S, Yang B, et al. Microscopic simulation of influence of particle size and gradation on permeability coefficient of soil. <italic>Rock Soil Mech</italic>, 2019, 40(1): 403

      劉一飛, 鄭東生, 楊兵, 等. 粒徑及級配特性對土體滲透系數影響的細觀模擬. 巖土力學, 2019, 40(1):403
      [24] Yang B H, Wu A X, Miao X X. 3D micropore structure evolution of ore particles based on image processing. <italic>Chin J Eng</italic>, 2016, 38(3): 328

      楊保華, 吳愛祥, 繆秀秀. 基于圖像處理的礦石顆粒三維微觀孔隙結構演化. 工程科學學報, 2016, 38(3):328
      [25] Zhang S, Liu W Y, Granata G. Effects of grain size gradation on the porosity of packed heap leach beds. <italic>Hydrometallurgy</italic>, 2018, 179: 238 doi: 10.1016/j.hydromet.2018.06.014
      [26] Raeini A Q, Bijeljic B, Blunt M J. Generalized network modeling: Network extraction as a coarse-scale discretization of the void space of porous media. <italic>Phys Rev E</italic>, 2017, 96(1): 013312 doi: 10.1103/PhysRevE.96.013312
      [27] Jiao H Z, Wang S F, Wu A X, et al. Pore network model of tailings thickener bed and water drainage channel evolution under the shearing effect. <italic>Chin J Eng</italic>, 2019, 41(8): 987

      焦華喆, 王樹飛, 吳愛祥, 等. 剪切濃密床層孔隙網絡模型與導水通道演化. 工程科學學報, 2019, 41(8):987
      [28] Bultreys T, Lin Q Y, Gao Y, et al. Validation of model predictions of pore-scale fluid distributions during two-phase flow. <italic>Phys Rev E</italic>, 2018, 97(5): 053104 doi: 10.1103/PhysRevE.97.053104
    • 加載中
    圖(14)
    計量
    • 文章訪問數:  1503
    • HTML全文瀏覽量:  1170
    • PDF下載量:  64
    • 被引次數: 0
    出版歷程
    • 收稿日期:  2020-01-17
    • 刊出日期:  2020-09-11

    目錄

      /

      返回文章
      返回