• 《工程索引》(EI)刊源期刊
    • 中文核心期刊
    • 中國科技論文統計源期刊
    • 中國科學引文數據庫來源期刊

    留言板

    尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

    姓名
    郵箱
    手機號碼
    標題
    留言內容
    驗證碼

    高壓直流干擾大幅值管地電位產生原因及影響因素分析

    袁洵 杜艷霞 梁毅 秦潤之

    袁洵, 杜艷霞, 梁毅, 秦潤之. 高壓直流干擾大幅值管地電位產生原因及影響因素分析[J]. 工程科學學報, 2021, 43(11): 1560-1568. doi: 10.13374/j.issn2095-9389.2020.06.02.002
    引用本文: 袁洵, 杜艷霞, 梁毅, 秦潤之. 高壓直流干擾大幅值管地電位產生原因及影響因素分析[J]. 工程科學學報, 2021, 43(11): 1560-1568. doi: 10.13374/j.issn2095-9389.2020.06.02.002
    YUAN Xun, DU Yan-xia, LIANG Yi, QIN Run-zhi. Causes of high amplitude of pipe-to-soil potential under HVDC interference and influencing factors[J]. Chinese Journal of Engineering, 2021, 43(11): 1560-1568. doi: 10.13374/j.issn2095-9389.2020.06.02.002
    Citation: YUAN Xun, DU Yan-xia, LIANG Yi, QIN Run-zhi. Causes of high amplitude of pipe-to-soil potential under HVDC interference and influencing factors[J]. Chinese Journal of Engineering, 2021, 43(11): 1560-1568. doi: 10.13374/j.issn2095-9389.2020.06.02.002

    高壓直流干擾大幅值管地電位產生原因及影響因素分析

    doi: 10.13374/j.issn2095-9389.2020.06.02.002
    基金項目: 國家重點研發計劃資助項目(2016YFC0802101)
    詳細信息
      通訊作者:

      E-mail:duyanxia@ustb.edu.cn

    • 中圖分類號: TG142.71

    Causes of high amplitude of pipe-to-soil potential under HVDC interference and influencing factors

    More Information
    • 摘要: 基于實際的工程參數建立了高壓直流干擾電場計算模型,利用數值模擬計算技術對高壓直流干擾大幅值管地電位的產生原因進行探究。考察接地極與管道之間的間距、管道防腐層類型、管道長度及土壤結構等因素對高壓直流干擾下管地電位的影響規律,得到高壓直流干擾大幅值管地電位是在接地極與管道距離較近、防腐層的絕緣性能較高、管道長度較大及上低下高的土壤電阻率分層結構共同作用下產生的。

       

    • 圖  1  接地極與管道相對位置示意圖

      Figure  1.  Diagram of relative position between the grounding electrode and pipeline

      圖  2  模型計算結果與現場數據匹配圖

      Figure  2.  Matching diagram of model calculation results and field data

      圖  3  高壓直流干擾中EsoilEpipeEpipe-to-soil三種計算電位示意圖

      Figure  3.  Diagram of the three calculated potentials of Esoil, Epipe, and Epipe-to-soil under HVDC interference

      圖  4  基礎模型中管道沿線兩種電位計算結果。(a)Esoil;(b)Epipe

      Figure  4.  Calculation results of two potentials along the pipeline in the validation model: (a) Esoil; (b) Epipe

      圖  5  接地極周圍土壤電位沿線分布圖

      Figure  5.  Distribution of soil potential around the grounding electrode

      圖  6  高壓直流干擾時不同垂直間距下管道沿線三種電位計算結果。(a)Esoil;(b)Epipe;(c)Epipe-to-soil

      Figure  6.  Calculation results of three types of potential along the pipeline under different vertical spacings under HVDC interference: (a) Esoil; (b) Epipe; (c) Epipe-to-soil

      圖  7  高壓直流干擾時不同防腐層下管道沿線三種電位計算結果。(a)Esoil;(b)Epipe;(c)Epipe-to-soil

      Figure  7.  Calculation results of three types of potential along the pipeline under different anticorrosive coatings under HVDC interference: (a) Esoil; (b) Epipe; (c) Epipe-to-soil

      圖  8  高壓直流干擾時不同管道長度下管道沿線三種電位計算結果。(a)Esoil;(b)Epipe;(c)Epipe-to-soil

      Figure  8.  Calculation results of three types of potential along the pipeline under different pipeline lengths under HVDC interference: (a) Esoil; (b) Epipe; (c) Epipe-to-soil

      圖  9  高壓直流干擾時不同底層土壤電阻率下管道沿線三種電位計算結果。(a)Esoil;(b)Epipe;(c)Epipe-to-soil

      Figure  9.  Calculation results of three potentials along the pipeline under different bottom soil resistivities under HVDC interference: (a) Esoil; (b) Epipe; (c) Epipe-to-soil

      圖  10  不同底層與表層土壤電阻率之比下管道中心處EsoilEpipeEpipe-to-soil分布圖

      Figure  10.  Distribution of Esoil, Epipe, and Epipe-to-soil in the center of the pipeline under the ratio of soil resistivity of different bottom and surface layers

      表  1  管道參數

      Table  1.   Pipe parameters

      ParametersOuter radius
      of pipe /
      mm
      Wall thickness /
      mm
      Depth /
      m
      Vertical distance between the pipeline and grounding electrode / kmResistivity of anticorrosive coating / (Ω·m2)Pipe length /
      km
      Basic model4005027105185
      Vertical distance between the pipeline and grounding electrode4005021/3/5/10105100
      Pipeline anticorrosive coating40050250/104/105100
      Pipe length40050251051/5/10/30/50/100
      Soil structure4005025105100
      下載: 導出CSV

      表  2  高壓直流接地極參數

      Table  2.   Parameters of high-voltage direct current (HVDC) grounding electrode

      Current in monopolar
      mode / A
      StructureRadius of outer
      ring / m
      Radius of inner
      ring / m
      Depth /
      m
      3200Dual-loop structure3152403.5
      下載: 導出CSV

      表  3  土壤結構參數

      Table  3.   Soil structure parameters

      LayersThickness/mResistivity/(Ω·m)
      First layer2.525
      Second layer8.160.5
      Third layer790
      下載: 導出CSV

      表  4  土壤結構計算的分層情況

      Table  4.   Layering of the soil structure calculation

      No.First layer soil
      resistivity/
      (Ω·m)
      Second layer soil
      resistivity/
      (Ω·m)
      Third layer soil
      resistivity/
      (Ω·m)
      Ratio of bottom
      to topsoil
      resistivity
      12560.550.2:1
      22560.512.50.5:1
      32560.5251:1
      42560.5502:1
      52560.51004:1
      62560.530012:1
      72560.580032:1
      82560.5150060:1
      92560.53000120:1
      下載: 導出CSV
      中文字幕在线观看
    • [1] Zhao W J. HVDC Engineering Technology. Beijing: China Electric Power Press, 2004

      趙畹君. 高壓直流輸電工程技術. 北京: 中國電力出版社, 2004
      [2] Liao M F, Zhang X L, Xing X Y, et al. Research status and development trend of grounding current effect of UHVDC grounding electrode on corrosion of the metal pipelines. High Voltage Apparatus, 2018, 54(7): 44

      廖敏夫, 張曉莉, 邢小羽, 等. 特高壓直流接地極入地電流對金屬管道腐蝕研究現狀與發展趨勢. 高壓電器, 2018, 54(7):44
      [3] Cao G F, Gu Q L, Jiang Y T, et al. Current interference of HVDC ground electrode to buried pipelines and its personal safety distance. Nat Gas Ind B, 2019, 6(5): 427 doi: 10.1016/j.ngib.2019.03.001
      [4] Zhou Y, Jiang Z T, Ma X M, et al. Case analysis on corrosion and protection of onshore oil and gas pipeline interfered by HVDC earth electrode. J Saf Sci Technol, 2019, 15(7): 156

      周毅, 姜子濤, 馬學民, 等. 陸上油氣管道受高壓直流接地極干擾的腐蝕與防護實例分析. 中國安全生產科學技術, 2019, 15(7):156
      [5] Wang Z G, Wang W J, Wang F Q, et al. Research on the corrosion effect of the UHVDC ground electrode current on the metal pipelines // IEEE International Conference on Power and Renewable Energy. Shanghai, 2016: 48
      [6] Bi W X, Chen H Y, Li Z J, et al. HVDC interference to buried pipeline: numerical modeling and continuous P/S potential monitoring // CORROSION 2016. Vancouver, 2016: NACE-2016-7714
      [7] Jiang Z T, Cao G F, Ge C G, et al. Study on the mechanism and influencing factors of HVDC interference // CORROSION 2017. New Orleans, 2017: NACE-2017-9293
      [8] Li X Y. HVDC System. Beijing: Science and Technology Press, 2010

      李興源. 高壓直流輸電系統. 北京: 科學技術出版社, 2010
      [9] Li Z J. Field test and analysis of interference of high or ultra high voltage direct current transmission system to underground steel pipeline. Corros Prot, 2017, 38(2): 142 doi: 10.11973/fsyfh-201702012

      李振軍. 高壓/特高壓直流輸電系統對埋地鋼質管道干擾的現場測試與分析. 腐蝕與防護, 2017, 38(2):142 doi: 10.11973/fsyfh-201702012
      [10] Qin R Z, Du Y X, Jiang Z T, et al. Research status of interference of HVDC transmission system to buried metal pipeline. Corros Sci Prot Technol, 2016, 28(3): 263

      秦潤之, 杜艷霞, 姜子濤, 等. 高壓直流輸電系統對埋地金屬管道的干擾研究現狀. 腐蝕科學與防護技術, 2016, 28(3):263
      [11] Wu J W, Song P. Influence of the high voltage ground current on buried pipeline’s potential. J Electr Eng, 2017, 5(2): 196

      吳江偉, 宋鵬. 高壓入地電流對埋地管道電位的影響. 電氣工程, 2017, 5(2):196
      [12] Li Z L. Interference and protection on buried pipeline of high voltage direct current grounding electrode. Pipeline Technol Equip, 2017(3): 39 doi: 10.3969/j.issn.1004-9614.2017.03.013

      李兆玲. 高壓直流接地極對埋地管道的干擾與防護. 管道技術與設備, 2017(3):39 doi: 10.3969/j.issn.1004-9614.2017.03.013
      [13] Gong Y, Xue C L, Yuan Z L, et al. Advanced analysis of HVDC electrodes interference on neighboring pipelines. J Power Energy Eng, 2015, 3: 332 doi: 10.4236/jpee.2015.34045
      [14] Qin R Z, Du Y X, Jiang Z T, et al. Corrosion behavior of X80 pipe steel under HVDC interference in sandy soil. Metals, 2018, 8(10): 809 doi: 10.3390/met8100809
      [15] Qin R Z, Du Y X, Xu Z C, et al. Anodic polarization behavior of X80 steel in Na2SO4 solution under high potential and current density conditions. Materials, 2019, 12(3): 394 doi: 10.3390/ma12030394
      [16] Ying B. The influence of HVDC grounding electrode on the safe operation of long-distance pipeline. Oil-Gasfield Surf Eng, 2014, 33(7): 23 doi: 10.3969/j.issn.1006-6896.2014.7.015

      應斌. 高壓直流輸電系統接地極對長輸管道安全運行的影響. 油氣田地面工程, 2014, 33(7):23 doi: 10.3969/j.issn.1006-6896.2014.7.015
      [17] Tan C B, Xu G, Xu M Z, et al. Effect of monopolar earth-return operation of grounding electrode on natural gas pipelines. Oil Gas Storage Transp, 2018, 37(6): 670

      譚春波, 許罡, 許明忠, 等. 接地極單極大地回路電流運行對天然氣管道的影響. 油氣儲運, 2018, 37(6):670
      [18] Sun J G, Cao G F, Han C C, et al. Influence of HVDC transmission system ground electrode on West-East Gas Pipeline. Corros Prot, 2017, 38(8): 631 doi: 10.11973/fsyfh-201708012

      孫建桄, 曹國飛, 韓昌柴, 等. 高壓直流輸電系統接地極對西氣東輸管道的影響. 腐蝕與防護, 2017, 38(8):631 doi: 10.11973/fsyfh-201708012
      [19] Zha X T, Zhang J W, Chen S L, et al. Corrosion behavior of carbon steel in interference of stray current and cathodic protection. Surf Technol, 2015, 44(12): 12

      查鑫堂, 張建文, 陳勝利, 等. 雜散電流干擾和陰極保護作用下碳鋼腐蝕規律研究. 表面技術, 2015, 44(12):12
      [20] Nicholson P. High voltage direct current interference with underground/underwater pipelines // Corrosion 2010. San Antonio, 2010: NACE-2010-10102
      [21] Fowles D T. Effects of HVDC on cast-iron pipe systems. J AWWA, 1971, 63(4): 233 doi: 10.1002/j.1551-8833.1971.tb04072.x
      [22] Qin R Z, Du Y X, Peng G Z, et al. High voltage direct current interference on buried pipelines: case study and mitigation design // CORROSION 2017. New Orleans, 2017: NACE-2017-9049
      [23] Qing P. Research on Influence of HVDC Ground Electrode Current on High-speed Railway Traction Net [Dissertation]. Beijing: North China Electric Power University, 2016

      青攀. 高壓直流接地極電流對高鐵牽引網的影響硏究[學位論文]. 北京: 華北電力大學, 2016
      [24] Nejad B M, Blumhagen L. Inductive interference from HVDC transmission lines on close proximity pipeline segments // CORROSION 2018. Phoenix, 2018: NACE-2018-10913
    • 加載中
    圖(10) / 表(4)
    計量
    • 文章訪問數:  1408
    • HTML全文瀏覽量:  672
    • PDF下載量:  40
    • 被引次數: 0
    出版歷程
    • 收稿日期:  2020-06-02
    • 網絡出版日期:  2020-09-16
    • 刊出日期:  2021-11-25

    目錄

      /

      返回文章
      返回