• 《工程索引》(EI)刊源期刊
    • 中文核心期刊
    • 中國科技論文統計源期刊
    • 中國科學引文數據庫來源期刊

    留言板

    尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

    姓名
    郵箱
    手機號碼
    標題
    留言內容
    驗證碼

    基于S-LRCN的微表情識別算法

    李學翰 胡四泉 石志國 張明

    李學翰, 胡四泉, 石志國, 張明. 基于S-LRCN的微表情識別算法[J]. 工程科學學報, 2022, 44(1): 104-113. doi: 10.13374/j.issn2095-9389.2020.06.15.006
    引用本文: 李學翰, 胡四泉, 石志國, 張明. 基于S-LRCN的微表情識別算法[J]. 工程科學學報, 2022, 44(1): 104-113. doi: 10.13374/j.issn2095-9389.2020.06.15.006
    LI Xue-han, HU Si-quan, SHI Zhi-guo, ZHANG Ming. Micro-expression recognition algorithm based on separate long-term recurrent convolutional network[J]. Chinese Journal of Engineering, 2022, 44(1): 104-113. doi: 10.13374/j.issn2095-9389.2020.06.15.006
    Citation: LI Xue-han, HU Si-quan, SHI Zhi-guo, ZHANG Ming. Micro-expression recognition algorithm based on separate long-term recurrent convolutional network[J]. Chinese Journal of Engineering, 2022, 44(1): 104-113. doi: 10.13374/j.issn2095-9389.2020.06.15.006

    基于S-LRCN的微表情識別算法

    doi: 10.13374/j.issn2095-9389.2020.06.15.006
    基金項目: 國家自然科學基金資助項目(61977005);四川省科技計劃資助項目(2018GZDZX0034);北京科技大學順德研究生院科技創新專項資助項目(BK19CF003);北京市科技計劃資助項目(Z201100004220010)
    詳細信息
      通訊作者:

      E-mail: husiquan@ustb.edu.cn

    • 中圖分類號: TP391.4

    Micro-expression recognition algorithm based on separate long-term recurrent convolutional network

    More Information
    • 摘要: 基于面部動態表情序列,針對靜態表情缺少時間信息等問題,將空間特征與時間特征融合,利用神經網絡在圖像分類領域良好的特征,對需要進行細節分析的表情序列進行處理,提出基于分離式長期循環卷積網絡(Separate long-term recurrent convolutional networks, S-LRCN)的微表情識別方法。首先選取微表情數據集提取面部圖像序列,引入遷移學習的方法,通過預訓練的卷積神經網絡模型提取表情幀的空間特征,降低網絡訓練中過擬合的危險,并將視頻序列的提取特征輸入長短期記憶網絡(Long short-team memory, LSTM)處理時域特征。最后建立學習者表情序列小型數據庫,將該方法用于輔助教學評價。

       

    • 圖  1  動態表情識別流程

      Figure  1.  Dynamic expression-recognition process

      圖  2  LRCN結構

      Figure  2.  LRCN structure

      圖  3  SENet模塊

      Figure  3.  SENet

      圖  4  雙向循環網絡

      Figure  4.  Bidirectional LSTM

      圖  5  LSTM神經元

      Figure  5.  LSTM neurons

      圖  6  實現方法

      Figure  6.  Implementation method

      圖  7  訓練曲線

      Figure  7.  Training curve

      圖  8  5種表情分類結果

      Figure  8.  Classification results of five expressions

      圖  9  不同LSTM模型實驗結果

      Figure  9.  Experimental results of different LSTM models

      圖  10  數據分類

      Figure  10.  Data classification

      圖  11  實驗結果

      Figure  11.  Experimental result

      表  1  劃分情況

      Table  1.   Dataset classification

      ClassifyCASME-ⅡSamples
      HappinessHappiness (32)32
      SurpriseSurprise (28)28
      DisgustDisgust (63)63
      RepressionRepression (27)27
      OthersOthers (99)105
      Sadness (4)
      Fear (2)
      下載: 導出CSV

      表  2  訓練結果

      Table  2.   Training results %

      Test1Test2Test3Test4Test5
      64.966.265.265.866.4
      下載: 導出CSV

      表  3  不同算法識別準確率

      Table  3.   Recognition accuracy of different algorithms

      MethodsAccuracy/%F1-Score/%
      LBP-TOP52.642.6
      STCLQP58.658.0
      CNN+LSTM61.058.5
      HOOF+LSTM59.856.0
      S-LRCN65.760.8
      下載: 導出CSV

      表  4  不同序列長度實驗效果

      Table  4.   Experimental results of different sequence lengths

      Sequence lengthAccuracy/%F1-Score/%
      662.056.6
      1065.760.8
      1563.158.6
      3056.549.6
      下載: 導出CSV
      中文字幕在线观看
    • [1] Mehrabian A. Nonverbal Communication. New York: Routledge, 2017
      [2] Ekman P. Facial expression and emotion. Am Psychol, 1993, 48(4): 384 doi: 10.1037/0003-066X.48.4.384
      [3] Ekman P, Friesen W V. Nonverbal leakage and clues to deception. Psychiatry, 1969, 32(1): 88 doi: 10.1080/00332747.1969.11023575
      [4] Yan W J, Wang S J, Liu Y J, et al. For micro-expression recognition: Database and suggestions. Neurocomputing, 2014, 136(136): 82
      [5] Wang S Y. CNN-RNN Based Micro-Expression Recognition [Dissertation]. Harbin: Harbin Engineering University, 2018

      王思宇. 基于CNN-RNN的微表情識別[學位論文]. 哈爾濱: 哈爾濱工程大學, 2018
      [6] Krizhevsky A, Sutskever I, Hinton G E. ImageNet classification with deep convolutional neural networks. Commun ACM, 2017, 60(6): 84 doi: 10.1145/3065386
      [7] Donahue J, Hendricks L A, Guadarrama S, et al. Long-term recurrent convolutional networks for visual recognition and description // 2015 IEEE Conference on Computer Vision and Pattern Recognition. Boston, 2015: 2625
      [8] Ekman P, Rosenberg E L. What the Face Reveals: Basic and Applied Studies of Spontaneous Expression Using the Facial Action Coding System (FACS). 2nd Ed. USA: Oxford University Press, 2005
      [9] Gunes H, Pantic M. Automatic, dimensional and continuous emotion recognition. Int J Synthetic Emotions, 2010, 1(1): 68 doi: 10.4018/jse.2010101605
      [10] Song Y L, Morency L P, Davis R. Learning a sparse codebook of facial and body microexpressions for emotion recognition // Proceedings of the 15th ACM International Conference on Multimodal Interaction. New York, 2013: 237
      [11] Li D, Xie L, Lu T, et al. Capture of microexpressions based on the entropy of oriented optical flow. Chin J Eng, 2017(11): 1727

      李丹, 解侖, 盧婷, 等. 基于光流方向信息熵統計的微表情捕捉. 工程科學學報, 2017(11):1727
      [12] Polikovsky S, Kameda Y, Ohta Y. Facial micro-expression detection in Hi-speed video based on facial action coding system (FACS). IEICE Trans Inform Syst, 2013, E96-D(1): 81 doi: 10.1587/transinf.E96.D.81
      [13] Shreve M, Godavarthy S, Goldgof D, et al. Macro- and micro-expression spotting in long videos using spatio-temporal strain // 2011 IEEE International Conference on Automatic Face & Gesture Recognition (FG). Santa Barbara, 2011: 51
      [14] Pfister T, Li X B, Zhao G Y, et al. Recognising spontaneous facial micro-expressions // 2011 International Conference on Computer Vision. Barcelona, 2011: 1449
      [15] Liang J, Yan W J, Wu Q, et al. Recent advances and future trends in micro-expression research. Bull Natl Nat Sci Foundation China, 2013(2): 75

      梁靜, 顏文靖, 吳奇, 等. 微表情研究的進展與展望. 中國科學基金, 2013(2):75
      [16] Wang Y D, See J, Phan R C W, et al. LBP with six intersection points: Reducing redundant information in LBP-TOP for micro-expression recognition // Asian Conference on Computer Vision ? ACCV2014. Switzerland, 2015: 525
      [17] Liong S T, See J, Phan R C W, et al. Spontaneous subtle expression detection and recognition based on facial strain. Signal Process Image Commun, 2016, 47: 170 doi: 10.1016/j.image.2016.06.004
      [18] Le Ngo A C, See J, Phan R C W. Sparsity in dynamics of spontaneous subtle emotion: analysis & application. IEEE Trans Affective Comput, 2017, 8(3): 396 doi: 10.1109/TAFFC.2016.2523996
      [19] Xu F, Zhang J P, Wang J Z. Microexpression identification and categorization using a facial dynamics map. IEEE Trans Affective Comput, 2017, 8(2): 254 doi: 10.1109/TAFFC.2016.2518162
      [20] Patel D, Hong X P, Zhao G Y. Selective deep features for micro-expression recognition // 2016 23rd International Conference on Pattern Recognition (ICPR). Cancun, 2016: 2258
      [21] Kim D H, Baddar W J, Ro Y M. Micro-expression recognition with expression-state constrained spatio-temporal feature representations // Proceedings of the 24th ACM international conference on Multimedia. Amsterdam, 2016: 382
      [22] Khor H Q, See J, Phan R C W, et al. Enriched long-term recurrent convolutional network for facial micro-expression recognition // 2018 13th IEEE International Conference on Automatic Face and Gesture Recognition (FG 2018). Xi’an, 2018: 667
      [23] Verburg M, Menkovski V. Micro-expression detection in long videos using optical flow and recurrent neural networks // 2019 14th IEEE International Conference on Automatic Face and Gesture Recognition (FG 2019). Lille, 2019: 1
      [24] Itti L, Koch C. Computational modelling of visual attention. Nat Rev Neurosci, 2001, 2(3): 194 doi: 10.1038/35058500
      [25] Wang C Y, Peng M, Bi T, et al. Micro-attention for micro-expression recognition [J/OL]. arXiv Preprint (2019-08-27) [2020-04-21]. https://arxiv.org/abs/1811.02360.
      [26] Parkhi O M, Vedaldi A, Zisserman A. Deep face recognition // Proceedings of the British Machine Vision Conference (BMVC). Swansea, 2015: 45
      [27] Hu J, Shen L, Albanie S, et al. Squeeze-and-excitation networks. IEEE Trans Pattern Anal Mach Intell, 2020, 42(8): 2011 doi: 10.1109/TPAMI.2019.2913372
      [28] Cao Q, Shen L, Xie W D, et al. VGGFace2: A dataset for recognising faces across pose and age // 2018 13th IEEE International Conference on Automatic Face and Gesture Recognition (FG 2018). Xi’an, 2018: 67
      [29] He K M, Zhang X Y, Ren S Q, et al. Deep residual learning for image recognition // 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas, 2016: 770
      [30] Cootes T F, Edwards G J, Taylor C J. Active appearance models. IEEE Trans Pattern Anal Mach Intell, 2001, 23(6): 681 doi: 10.1109/34.927467
      [31] Peng M. Dual Temporal Scale Convolutional Neural Network for Micro-Expression Recognition [Dissertation]. Chongqing: Southwest University, 2017

      彭敏. 基于雙時間尺度卷積神經網絡的微表情識別[學位論文]. 重慶: 西南大學, 2017
      [32] Yan W J, Li X B, Wang S J, et al. CASME II: An improved spontaneous micro-expression database and the baseline evaluation. PLoS ONE, 2014, 9(1): e86041 doi: 10.1371/journal.pone.0086041
      [33] Zhou Z H, Zhao G Y, Pietikinen M. Towards a practical lipreading system // The 24th IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2011). Providence, RI, 2011: 137
      [34] Zhao G Y, Pietikainen M. Dynamic texture recognition using local binary patterns with an application to facial expressions. IEEE Trans Pattern Anal Mach Intell, 2007, 29(6): 915 doi: 10.1109/TPAMI.2007.1110
      [35] Huang X H, Zhao G Y, Hong X P, et al. Spontaneous facial micro-expression analysis using spatiotemporal completed local quantized patterns. Neurocomputing, 2016, 175: 564 doi: 10.1016/j.neucom.2015.10.096
    • 加載中
    圖(11) / 表(4)
    計量
    • 文章訪問數:  2334
    • HTML全文瀏覽量:  976
    • PDF下載量:  130
    • 被引次數: 0
    出版歷程
    • 收稿日期:  2020-06-15
    • 網絡出版日期:  2020-07-23
    • 刊出日期:  2022-01-01

    目錄

      /

      返回文章
      返回