• 《工程索引》(EI)刊源期刊
    • 中文核心期刊
    • 中國科技論文統計源期刊
    • 中國科學引文數據庫來源期刊

    留言板

    尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

    姓名
    郵箱
    手機號碼
    標題
    留言內容
    驗證碼

    一種基于差分進化的正弦余弦算法

    劉小娟 王聯國

    劉小娟, 王聯國. 一種基于差分進化的正弦余弦算法[J]. 工程科學學報, 2020, 42(12): 1674-1684. doi: 10.13374/j.issn2095-9389.2020.07.26.002
    引用本文: 劉小娟, 王聯國. 一種基于差分進化的正弦余弦算法[J]. 工程科學學報, 2020, 42(12): 1674-1684. doi: 10.13374/j.issn2095-9389.2020.07.26.002
    LIU Xiao-juan, WANG Lian-guo. A sine cosine algorithm based on differential evolution[J]. Chinese Journal of Engineering, 2020, 42(12): 1674-1684. doi: 10.13374/j.issn2095-9389.2020.07.26.002
    Citation: LIU Xiao-juan, WANG Lian-guo. A sine cosine algorithm based on differential evolution[J]. Chinese Journal of Engineering, 2020, 42(12): 1674-1684. doi: 10.13374/j.issn2095-9389.2020.07.26.002

    一種基于差分進化的正弦余弦算法

    doi: 10.13374/j.issn2095-9389.2020.07.26.002
    基金項目: 甘肅農業大學科技創新基金資助項目(GAU-XKJS-2018-251);甘肅省教育信息化建設專項任務資助項目(2011-02);國家自然科學基金資助項目(61751313)
    詳細信息
      通訊作者:

      E-mail:wanglg@gsau.edu.cn

    • 中圖分類號: TP18

    A sine cosine algorithm based on differential evolution

    More Information
    • 摘要: 正弦余弦算法是一種新型仿自然優化算法,利用正余弦數學模型來求解優化問題。為提高正弦余弦算法的優化精度和收斂速度,提出了一種基于差分進化的正弦余弦算法。該算法通過非線性方式調整參數提高算法的搜索能力、利用差分進化策略平衡算法的全局探索能力及局部開發能力并加快收斂速度、通過偵察蜂策略增加種群多樣性以及利用全局最優個體變異策略增強算法的局部開發能力等優化策略來改進算法,最后通過仿真實驗和結果分析證明了算法的優異性能。

       

    • 圖  1  SCADE算法流程圖

      Figure  1.  Flowchart of the proposed SCADE algorithm

      圖  2  收斂曲線圖。(a)F2;(b)F5;(c)F8;(d)F10;(e)F14;(f)F23

      Figure  2.  Convergence curves: (a) F2; (b) F5; (c) F8; (d) F10; (e) F14; (f) F23

      表  1  $\sin {r_2}$的符號對2種分項符號的影響

      Table  1.   Effect of the sign of sin r2 on the signs of two itemized items

      ItemCase 1Case 2Case 3Case 4
      $\left( {{r_3}p_{{\rm{g}}j}^t - x_{ij}^t} \right)$++??
      $\left| {{r_3}p_{{\rm{g}}j}^t - x_{ij}^t} \right|$++++
      $\sin {r_2}$+?+?
      $\sin {r_2} \cdot \left( {{r_3}p_{{\rm{g}}j}^t - x_{ij}^t} \right)$+??+
      $\sin {r_2} \cdot \left| {{r_3}p_{{\rm{g}}j}^t - x_{ij}^t} \right|$+?+?
      下載: 導出CSV

      表  2  各算法設置的具體參數表

      Table  2.   Specific parameters set by each algorithm

      AlgorithmParameters
      SCA[2]r2∈[0, 2π],r3∈[?2, 2],r4∈[0, 1],a=2,M=30,T=500
      SCADEa=2,M=30,T=500,nlim=50,CR=0.3,kmax=3,h=10,δ2max=0.6,δ2min=0.0001
      PSO[23]M=30,T=500,C1=1,C2=2,Vmax=4,W linearly
      decreases from 0.9 to 0.4
      DE[24]M=30,T=500,CR=0.3,F is randomly
      generated between 0.2 and 0.6
      ABC[25]M=30,T=500,nlim=50
      m-SCA[11]M=30,T=500,JR=0.1
      COSCA[6]M=30,T=500,η=1,astart=1,aend=0,pr=0.1
      下載: 導出CSV

      表  3  SCADE與基本SCA的實驗結果

      Table  3.   Experimental results of SCADE and basic SCA

      FunctionAlgorithmAverage optimal valueMedian valueBest valueWorst valueStandard deviationAverage running time/s
      F1SCA11.21804.07911.5764×10?281.114018.59100.0370
      SCADE9.5838×10?951.1814×10?1022.0847×10?1102.7446×10?934.9205×10?940.0182
      F2SCA1.3204×10?27.5606×10?34.7739×10?41.0687×10?12.0170×10?20.0469
      SCADE6.1367×10?634.4107×10?687.8150×10?741.5173×10?612.7342×10?620.0286
      F3SCA9.8213×1037.4877×1031.7335×1032.8484×1046.1244×1030.0602
      SCADE1.9344×10?41.6183×10?94.8025×10?185.4721×10?39.8108×10?40.0408
      F4SCA34.732034.149013.426063.997011.64200.0431
      SCADE2.8460×10?99.2782×10?151.2815×10?228.5125×10?81.5279×10?80.0232
      F5SCA2.8604×1045.8118×1032.3455×1024.8554×1058.6617×1040.1251
      SCADE26.926026.917026.625027.27901.4726×10?10.1116
      F6SCA12.65907.31354.336886.857015.18200.0377
      SCADE7.5412×10?55.1302×10?51.3238×10?55.5298×10?49.4555×10?50.0182
      F7SCA1.0554×10?18.6533×10?21.2670×10?23.1593×10?18.2888×10?20.0382
      SCADE8.4372×10?36.9961×10?33.1314×10?52.4622×10?27.3689×10?30.0190
      F8SCA?3.7782×103?3.7519×103?4.4256×103?3.2776×1032.6104×1020.0630
      SCADE?1.2005×104?1.1969×104?1.2549×104?1.1267×1042.5311×1020.0429
      F9SCA38.947025.89005.2761×10?31.5292×10239.39200.0822
      SCADE000000.0618
      F10SCA11.131014.76308.0444×10?220.35109.28780.0571
      SCADE2.1282×10?155.8872×10?165.8872×10?164.1414×10?151.7605×10?150.0469
      F11SCA8.7567×10?19.4828×10?15.2069×10?31.62973.3704×10?10.0594
      SCADE000000.0387
      F12SCA1.3000×10310.25601.21492.0406×1044.4303×1030.0923
      SCADE3.4531×10?53.4338×10?61.3607×10?69.2574×10?41.6551×10?40.0582
      F13SCA3.6900×1051.0341×1033.42293.1604×1067.8302×1050.0937
      SCADE8.1272×10?33.5569×10?51.6368×10?59.9458×10?22.2908×10?20.0591
      F14SCA1.52889.9872×10?19.9800×10?12.98218.7639×10?10.0651
      SCADE9.9800×10?19.9800×10?19.9800×10?19.9800×10?14.9981×10?160.0658
      F15SCA1.0426×10?38.5768×10?43.6524×10?41.5525×10?33.5566×10?40.0199
      SCADE7.5165×10?47.5211×10?44.2280×10?41.2236×10?31.5392×10?40.0185
      F16SCA?1.0316?1.0316?1.0316?1.03146.0391×10?150.0029
      SCADE?1.0316?1.0316?1.0316?1.03164.4409×10?50.0029
      F17SCA4.0059×10?13.9945×10?13.9789×10?14.1082×10?13.3623 ×10?30.0036
      SCADE3.9789×10?13.9789×10?13.9789×10?13.9789×10?100.0035
      F18SCA3.0011333.00112.0536×10?40.0032
      SCADE33333.1780×10?70.0033
      F19SCA?3.8545?3.8542?3.8622?3.85042.7837×10?30.0087
      SCADE?3.8628?3.8628?3.8628?3.86287.6401×10?130.0077
      F20SCA?2.9131?3.0006?3.1491?2.24752.4164×10?10.0131
      SCADE?3.3119?3.3220?3.3220?3.20313.0470×10?20.0101
      F21SCA?2.2308?8.8080×10?1?7.1703?4.9646×10?11.96160.0077
      SCADE?9.7526?10.1530?10.1530?6.51378.9107×10?10.0064
      F22SCA?3.3632?3.8034?5.6727?9.0289×10?11.72610.0088
      SCADE?10.4029?10.4029?10.4029?10.40291.4504×10?150.0071
      F23SCA?4.1765?4.0169?4.0169?9.4459×10?12.09410.0098
      SCADE?10.5364?10.5364?10.5364?10.53643.4495×10?140.0088
      下載: 導出CSV

      表  4  SCADE與SCA改進算法及其它智能優化算法的性能比較

      Table  4.   Performance comparison of SCADE with modified SCA and other algorithms

      FunctionEvaluation criterionSCAPSODEABCm-SCACOSCASCADE
      F1Average optimal value11.21807.1569×10?34.9048×10?52.1134×10?42.1878×10?38.0426×10?819.5838×10?95
      Standard deviation18.59105.7977×10?31.7664×10?53.5538×10?45.0035×10?34.0035×10?804.9205×10?94
      F2Average optimal value1.3204×10?23.10716.7504×10?45.7851×10?35.9935×10?51.7522×10?446.1367×10?63
      Standard deviation2.0170×10?25.24531.8924×10?43.1108×10?31.9175×10?45.1460×10?442.7342×10?62
      F3Average optimal value9.8213×10366.46843.5128×1041.9536×1042.9935×1022.3314×10?11.9344×10?4
      Standard deviation6.1244×10321.86476.0671×1033.4087×1033.5212×1021.24419.8108×10?4
      F4Average optimal value34.73208.7838×10?18.215667.39422.20076.0249×10?312.8460×10?9
      Standard deviation11.64201.9543×10?11.64084.91351.21622.8798×10?301.5279×10?8
      F5Average optimal value2.8604×1041.0885×10285.617939.964933.569028.42802.6926×101
      Standard deviation8.6617×10476.07925.6043×10133.914412.73002.8280×10?11.4726×10?1
      F6Average optimal value12.65906.0666×10?35.3471×10?56.3063×10?41.67952.05987.5412e-005
      Standard deviation15.18203.9077×10?33.1452×10?52.0140×10?34.6889×10?13.0051×10?19.4555×10?5
      F7Average optimal value1.0554×10?14.14294.5135×10?25.4601×10?11.3485×10?22.0053×10?38.4372×10?3
      Standard deviation8.2888×10?24.71661.3457×10?21.6048×10?18.1723×10?31.4012×10?37.3689×10?3
      F8Average optimal value?3.7782×103?4.1603×103?8.4186×103?1.1434×104?3.7936×103?4.1950×103?1.2005×104
      Standard deviation2.6104×1027.9194×1024.3777×1021.8317×1023.0895×1023.3863×1022.5311×102
      F9Average optimal value38.947087.98051.0705×1026.13813.587200
      Standard deviation39.392028.11849.46362.53527.801800
      F10Average optimal value11.13101.4188×10?11.8656×10?31.6109×10?14.9953×10?31.2993×10?152.1282×10?15
      Standard deviation9.28782.3163×10?14.9290×10?42.7105×10?17.2695×10?31.4211×10?151.7605×10?15
      F11Average optimal value8.7567×10?17.9155×10?34.1185×10?33.6220×10?23.9031×10?200
      Standard deviation3.3704×10?19.0220×10?31.0744×10?23.2998×10?27.2525×10?200
      F12Average optimal value1.3000×1031.0510×10?21.3328×10?53.4010×10?22.7777×10?11.8111×10?13.4531×10?5
      Standard deviation4.4303×1033.1074×10?21.1565×10?53.2998×10?21.7035×10?11.0280×10?11.6551×10?4
      F13Average optimal value3.6900×1056.0034×10?36.1145×10?57.3970×10?41.95352.64068.1272×10?3
      Standard deviation7.8302×1059.4010×10?33.6027×10?52.1983×10?47.1911×10?11.3379×10?12.2908×10?2
      F14Average optimal value1.52882.60839.9800×10?19.9800×10?11.17753.49769.9800×10?1
      Standard deviation8.7639×10?12.35005.3934×10?164.0294×10?165.1443×10?12.51124.9981×10?16
      F15Average optimal value1.0426×10?32.2388×10?31.3288×10?38.9459×10?45.3421×10?45.6655×10?47.5165×10?4
      Standard deviation3.5566×10?44.8585×10?33.5391×10?32.5167×10?41.0454×10?41.4934×10?41.5392×10?4
      F16Average optimal value?1.0316?1.0316?1.0316?1.0316?1.0316?1.0316?1.0316
      Standard deviation6.0391×10?54.4409×10?164.4409×10?164.4600×10?164.5772×10?69.5922×10?74.4409×10?16
      F17Average optimal value4.0059×10?13.9789×10?13.9789×10?13.9789×10?13.9793×10?13.9827×10?10.3980
      Standard deviation3.3623×10?3009.6549×10?136.4763×10?54.2222×10?40
      F18Average optimal value3.0001333.000633.00013
      Standard deviation2.0536×10?43.4807×10?152.2204×10?151.5874×10?32.7799×10?58.7317×10?53.1780×10?7
      F19Average optimal value?3.8545?3.8604?3.8628?3.8628?3.8623?3.8615?3.8628
      Standard deviation2.7837×10?33.6118×10?32.2204×10?157.3021×10?73.3231×10?41.3023×10?37.6401×10?13
      F20Average optimal value?2.9131?3.1561?3.3037?3.3220?3.3100?3.1561?3.3119
      Standard deviation2.4164×10?11.2335×10?14.0486×10?21.3698×10?112.1606×10?23.7641×10?23.0470×10?2
      F21Average optimal value?2.2308?7.3872?9.5674?10.1416?9.9300?9.6428?9.7526
      Standard deviation1.96163.06381.79415.0343×10?21.7054×10?11.26298.9107×10?1
      F22Average optimal value?3.3632?8.9467?10.1484?10.3785?10.2330?10.2540?10.4029
      Standard deviation1.72612.69471.37098.7082×10?21.0363×10?11.0668×10?11.4504
      F23Average optimal value?4.1765?9.0497?1.0325×101?1.0526×101?1.0315×101?1.0369×101?10.5364
      Standard deviation2.09412.76221.06212.8287×10?21.7846×10?11.2772×10?13.4495×10?14
      Decision result+ /=/ ?0/0/232/2/195/2/165/0/182/0/213/2/18
      下載: 導出CSV

      表  5  nlim對SCADE的性能影響

      Table  5.   Influence of nlim on the SCADE performance

      nlimF2 (P=0.705)F8 (P=0)F23 (P=0)
      Average optimal valueStandard deviationRankAverage optimal valueStandard deviationRank Average optimal valueStandard deviationRank
      102.5689×10?631.3681×10?624?1.1748×1042.8466×1024?10.53642.9172×10?144
      301.1534×10?626.1924×10?625?1.1633×1043.4766×1025?10.53642.8004×10?135
      509.5748×10?664.3056×10?651?1.2005×1042.5311×1021?10.53649.2245×10?152
      702.3276×10?651.1086×10?642?1.1938×1042.9715×1022?10.53642.6348×10?151
      1009.2052×10?644.8551×10?633?1.1928×1043.1146×1023?10.53641.7341×10?143
      下載: 導出CSV

      表  6  CR對SCADE的性能影響

      Table  6.   Influence of CR on the SCADE performance

      CRF2 (P=0.15)F8 (P=0)F23 (P=0)
      Average optimal valueStandard deviationRankAverage optimal valueStandard deviationRank Average optimal valueStandard deviationRank
      0.17.5350×10?652.9765×10?642?1.2451×1041.1012×1021?10.50801.4802×10?14
      0.21.3455×10?606.9665×10?605?1.2144×1042.3487×1022?10.53647.7044×10?63
      0.39.0366×10?672.5547×10?661?1.1740×1042.4093×1023?10.53643.7542×10?151
      0.45.1033×10?622.7365×10?614?1.1325×1045.0817×1024?10.53643.7808×10?132
      0.51.3633×10?645.8753×10?643?1.0847×1046.3442×1025?10.35649.7075×10?15
      下載: 導出CSV

      表  7  h對SCADE的性能影響

      Table  7.   Influence of h on the SCADE performance

      hF2 (P=0)F8 (P=0.004)F23 (P=0)
      Average optimal valueStandard deviationRankAverage optimal valueStandard deviationRank Average optimal valueStandard deviationRank
      52.0355×10?1301.0958×10?1291?1.1898×1043.1830×1022?10.53643.1104×10?123
      107.6735×10?663.1669×10?662?1.1920×1042.7977×1021?10.53643.8374×10?151
      152.4968×10?421.2590×10?413?1.1830×1042.6020×1024?10.51600.11204
      202.1214×10?318.8367×10?314?1.1893×1043.2600×1023?10.51501.1756×10?15
      258.7347×10?243.4513×10?235?1.1804×1042.4240×1025?10.53647.4506×10?142
      下載: 導出CSV
      中文字幕在线观看
    • [1] Mirjalili S. SCA: a sine cosine algorithm for solving optimization problems. Knowl-Based Syst, 2016, 96: 120 doi: 10.1016/j.knosys.2015.12.022
      [2] Liu Y, Ma L. Sine cosine algorithm with nonlinear decreasing conversion parameter. Comput Eng Appl, 2017, 53(2): 1 doi: 10.3778/j.issn.1002-8331.1608-0349

      劉勇, 馬良. 轉換參數非線性遞減的正弦余弦算法. 計算機工程與應用, 2017, 53(2):1 doi: 10.3778/j.issn.1002-8331.1608-0349
      [3] Xu S J, Long W. Improved sine cosine algorithm for solving high-dimensional optimization problems. Appl Res Comput, 2018, 35(9): 2574 doi: 10.3969/j.issn.1001-3695.2018.09.003

      徐松金, 龍文. 求解高維優化問題的改進正弦余弦算法. 計算機應用研究, 2018, 35(9):2574 doi: 10.3969/j.issn.1001-3695.2018.09.003
      [4] Shi B. A Modified Sine-Cosine Algorithm for Solving Optimization Problems[Dissertation]. Wuhan: Wuhan University, 2018

      石磊. 一種改進的正弦余弦優化算法[學位論文]. 武漢: 武漢大學, 2018
      [5] Yu K, Jiao Q L, Liu Z L, et al. Positioning of characteristic spectral peaks based on improved sine cosine algorithm. Acta Opt Sin, 2019, 39(9): 403

      于坤, 焦青亮, 劉子龍, 等. 基于改進正弦余弦算法的光譜特征峰定位方法. 光學學報, 2019, 39(9):403
      [6] Guo W Y, Wang Y, Dai F, et al. Alternating sine cosine algorithm based on elite chaotic search strategy. Control Decis, 2019, 34(8): 1654

      郭文艷, 王遠, 戴芳, 等. 基于精英混沌搜索策略的交替正余弦算法. 控制與決策, 2019, 34(8):1654
      [7] Fang X Y, Wu X J, You D T. Sine cosine algorithm with learning mechanism. Appl Res Comput, 2020, 37(3): 809

      方旭陽, 武相軍, 游大濤. 具有學習機制的正弦余弦算法. 計算機應用研究, 2020, 37(3):809
      [8] Xu M, Jiao J J, Long W. Sine cosine algorithm based on Logistic model and stochastic differential mutation. Comput Sci, 2020, 47(2): 206 doi: 10.11896/jsjkx.181102197

      徐明, 焦建軍, 龍文. 基于Logistic模型和隨機差分變異的正弦余弦算法. 計算機科學, 2020, 47(2):206 doi: 10.11896/jsjkx.181102197
      [9] Lang C B, Jia H M, Xing Z K, et al. Multi-threshold image segmentation based on improved sine cosine optimization algorithm. Appl Res Comput, 2020, 37(4): 1215

      郎春博, 賈鶴鳴, 邢致愷, 等. 基于改進正余弦優化算法的多閾值圖像分割. 計算機應用研究, 2020, 37(4):1215
      [10] Gupta S, Deep K. Improved sine cosine algorithm with crossover scheme for global optimization. Knowl-Based Syst, 2019, 165: 374 doi: 10.1016/j.knosys.2018.12.008
      [11] Gupta S, Deep K. A hybrid self-adaptive sine cosine algorithm with opposition based learning. Expert Syst Appl, 2019, 119: 210 doi: 10.1016/j.eswa.2018.10.050
      [12] Kumar L, Bharti K K. A novel hybrid BPSO-SCA approach for feature selection. Nat Comput, 2019 doi: 10.1007/s11047-019-09769-z
      [13] Guo W Y, Wang Y, Zhao F Q, et al. Riesz fractional derivative Elite-guided sine cosine algorithm. Appl Soft Comput, 2019, 81: 105481 doi: 10.1016/j.asoc.2019.04.044
      [14] Mouhoub Belazzoug, Mohamed Touahria, Farid Nouioua, et al. An improved sine cosine algorithm to select features for text categorization. King Saud University - Computer and Information Sciences, 2020, 32(4): 454 doi: 10.1016/j.jksuci.2019.07.003
      [15] Guo W Y, Wang Y, Dai F, et al. Improved sine cosine algorithm combined with optimal neighborhood and quadratic interpolation strategy. Eng Appl Artif Intell, 2020, 94: 103779 doi: 10.1016/j.engappai.2020.103779
      [16] Chen H, Heidari A A, Zhao X H, et al. Advanced orthogonal learning-driven multi-swarm sine cosine optimization: framework and case studies. Expert Syst Appl, 2020, 144: 113113 doi: 10.1016/j.eswa.2019.113113
      [17] Chen H L, Wang M J, Zhao X H. A multi-strategy enhanced sine cosine algorithm for global optimization and constrained practical engineering problems. Appl Math Comput, 2020, 369: 124872
      [18] Wang M W, Wu C M, Chen M L, et al. A band selection approach based on Lévy sine cosine algorithm and alternative distribution for hyperspectral image. Int J Remote Sens, 2020, 41(9): 3429 doi: 10.1080/01431161.2019.1706010
      [19] Wang J C, Li Q, Cui J R, et al. An improved artificial bee colony algorithm: particle bee colony. Chin J Eng, 2018, 40(07): 871

      王繼超, 李擎, 崔家瑞, 等. 一種改進的人工蜂群算法——粒子蜂群算法. 工程科學學報, 2018, 40(07):871
      [20] Zhang C, Li Q, Wang W Q, et al. Immune particle swarm optimization algorithm based on the adaptive search strategy. Chin J Eng, 2017, 39(1): 125

      張超, 李擎, 王偉乾, 等. 基于自適應搜索的免疫粒子群算法. 工程科學學報, 2017, 39(1):125
      [21] Zhang C, Li Q, Chen P, et al. Improved ant colony optimization based on particle swarm optimization and its application. J Univ Sci Technol Beijing, 2013, 35(7): 955

      張超, 李擎, 陳鵬, 等. 一種基于粒子群參數優化的改進蟻群算法及其應用. 北京科技大學學報, 2013, 35(7):955
      [22] Yao X, Liu Y, Lin G M. Evolutionary programming made faster. IEEE Trans Evol Comput, 1999, 3(2): 82 doi: 10.1109/4235.771163
      [23] Eberhart R, Kennedy J. A new optimizer using particle swarm theory // Proceedings of the Sixth International Symposium on Micro Machine and Human Science. Nagoya, 1995: 39
      [24] Storn R, Price K. Differential evolution - A simple and efficient heuristic for global optimization over continuous spaces. Global Optim, 1997, 11(4): 341 doi: 10.1023/A:1008202821328
      [25] Karaboga D, Basturk B. A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. Global Optim, 2007, 39(3): 459 doi: 10.1007/s10898-007-9149-x
      [26] Karaboga D, Basturk B. On the performance of artificial bee colony (ABC) algorithm. Appl Soft Comput, 2008, 8(1): 687 doi: 10.1016/j.asoc.2007.05.007
    • 加載中
    圖(2) / 表(7)
    計量
    • 文章訪問數:  1449
    • HTML全文瀏覽量:  919
    • PDF下載量:  70
    • 被引次數: 0
    出版歷程
    • 收稿日期:  2020-07-26
    • 刊出日期:  2020-12-25

    目錄

      /

      返回文章
      返回