• 《工程索引》(EI)刊源期刊
    • 中文核心期刊
    • 中國科技論文統計源期刊
    • 中國科學引文數據庫來源期刊

    留言板

    尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

    姓名
    郵箱
    手機號碼
    標題
    留言內容
    驗證碼

    非光滑帶鋼在粗糙軋輥平整軋制過程中表面微觀形貌的轉印行為與演變規律

    張勃洋 張煜東 李嘉琪 李瑞 張清東

    張勃洋, 張煜東, 李嘉琪, 李瑞, 張清東. 非光滑帶鋼在粗糙軋輥平整軋制過程中表面微觀形貌的轉印行為與演變規律[J]. 工程科學學報, 2021, 43(10): 1355-1364. doi: 10.13374/j.issn2095-9389.2020.08.25.004
    引用本文: 張勃洋, 張煜東, 李嘉琪, 李瑞, 張清東. 非光滑帶鋼在粗糙軋輥平整軋制過程中表面微觀形貌的轉印行為與演變規律[J]. 工程科學學報, 2021, 43(10): 1355-1364. doi: 10.13374/j.issn2095-9389.2020.08.25.004
    ZHANG Bo-yang, ZHANG Yu-dong, LI Jia-qi, LI Rui, ZHANG Qing-dong. Transfer behaviors and evolution of surface micromorphology of non-smooth strip in temper rolling process with rough roller[J]. Chinese Journal of Engineering, 2021, 43(10): 1355-1364. doi: 10.13374/j.issn2095-9389.2020.08.25.004
    Citation: ZHANG Bo-yang, ZHANG Yu-dong, LI Jia-qi, LI Rui, ZHANG Qing-dong. Transfer behaviors and evolution of surface micromorphology of non-smooth strip in temper rolling process with rough roller[J]. Chinese Journal of Engineering, 2021, 43(10): 1355-1364. doi: 10.13374/j.issn2095-9389.2020.08.25.004

    非光滑帶鋼在粗糙軋輥平整軋制過程中表面微觀形貌的轉印行為與演變規律

    doi: 10.13374/j.issn2095-9389.2020.08.25.004
    基金項目: 國家自然科學基金資助項目(51575040,U1760106);中央高校基本科研業務費專項資金資助(FRF-TP-17-010A1,FRF-TP-19-039A2Z)
    詳細信息
      通訊作者:

      E-mail:zhangby@ustb.edu.cn

    • 中圖分類號: TG335

    Transfer behaviors and evolution of surface micromorphology of non-smooth strip in temper rolling process with rough roller

    More Information
    • 摘要: 針對平整軋制過程不同用途帶鋼對表面微觀形貌的特殊要求,在批量跟蹤電火花毛化軋輥、磨削軋輥和冷軋后帶鋼表面微觀形貌的基礎上,建立工作輥與帶鋼都可考慮真實表面粗糙峰的帶鋼表面微觀形貌軋制轉印生成模型,采用工業實驗驗證了仿真模型的準確性,并據此模型分析軋制前帶鋼已經具有表面粗糙度分別大于、等于、小于軋輥表面粗糙度時,帶鋼表面微觀形貌的軋制轉印行為與遺傳演變規律。提出了負轉印和轉印飽和的概念,定義了兩種極限軋制轉印狀態的描述指標— —負轉印最大和轉印飽和,研究發現當帶鋼表面粗糙度小于或等于軋輥表面粗糙度時,存在負轉印最大點和轉印飽和點;當帶鋼表面粗糙度大于軋輥表面粗糙度時,負轉印最大點和轉印飽和點重合。在此基礎上,采用負轉印最大點與轉印飽和點對應的臨界板寬軋制力,描述帶鋼表面微觀形貌的遺傳及演變規律,并系統仿真分析帶鋼屈服強度、帶鋼軋前表面粗糙度、軋輥表面粗糙度等工藝條件參數對于負轉印最大點與轉印飽和點對應的臨界單位板寬軋制力的影響規律,發現隨著帶鋼屈服強度增大和軋輥表面粗糙度增加,該臨界單位板寬軋制力均增大;隨著帶鋼表面粗糙度增大,負轉印最大點對應的臨界單位板寬軋制力增大,但轉印飽和點對應的臨界單位板寬軋制力卻減小。

       

    • 圖  1  不同加工方式工作輥軋制帶鋼表面三維微觀形貌。(a)電火花加工;(b)磨削加工

      Figure  1.  Three-dimensional micromorphology of strip surface rolled by work roll with different machining methods: (a) electrical discharge machining; (b) grinding machine

      圖  2  兩種典型帶鋼表面微觀形貌軋制與板寬方向二維輪廓。(a)電火花加工;(b)磨削加工

      Figure  2.  Two-dimensional profile along the width and rolling direction of two kinds of typical strip surface microtopography: (a) electrical discharge machining; (b) grinding machine

      圖  3  平整軋制過程粗糙工作輥與非光滑帶鋼軋制轉印模型。(a)三維模型;(b)局部放大圖

      Figure  3.  Three-dimensional model of rolling transfer of rough work roll and non-smooth strip during flat rolling: (a)three-dimensional model; (b) partial enlarged drawing

      圖  4  工作輥與帶鋼二維平面仿真模型。(a)平面壓入幾何模型;(b)有限元仿真網格劃分

      Figure  4.  Two-dimensional plane simulation model of work roll and strip:(a) geometric model of two-dimensional profile plane pressing on strip surface; (b) mesh generation of finite element simulation

      圖  5  不同軋制力下帶鋼表面粗糙度遺傳和演變規律

      Figure  5.  Inheritance and evolution of strip surface roughness under different rolling forces

      圖  6  不同單位板寬軋制力下帶鋼與工作輥的位移場分布。(a)帶鋼尖峰擠壓;(b)軋輥尖峰壓入;(c)軋輥凹坑填充;(d)軋制轉印飽和

      Figure  6.  Displacement field distribution of strip and work roll under different rolling forces: (a) strip peak extrusion; (b) roll peak extrusion; (c) roll pit filling; (d) rolling transfer saturation

      圖  7  平整軋制過程帶鋼表面微觀形貌遺傳和演變規律示意圖

      Figure  7.  Diagram of the inheritance and evolution of strip surface micromorphology in the process of flat rolling

      圖  8  工作輥Ra > 帶鋼Ra時不同影響因素對負轉印最大點對應臨界單位板寬軋制力的影響。(a)工作輥表面粗糙度;(b)入口帶鋼表面粗糙度

      Figure  8.  Influence of different factors on the critical rolling force per unit width at the maximum point of negative transfer when work roll Ra > strip Ra: (a) surface roughness of the work roll; (b) surface roughness of inlet strip

      圖  9  工作輥表面二維輪廓支撐長度率曲線

      Figure  9.  Support length ratio curve of two-dimensional contour of work roll surface

      圖  10  工作輥Ra > 帶鋼Ra時不同影響因素對軋制轉印飽和點對應臨界單位板寬軋制力的影響。(a)工作輥表面粗糙度;(b)入口帶鋼表面粗糙度

      Figure  10.  Influence of different factors on the critical rolling force per unit width at the saturation point of rolling transfer when work roll Ra > strip Ra: (a) surface roughness of the work roll; (b) surface roughness of inlet strip

      圖  11  工作輥Ra < 帶鋼Ra時不同影響因素對轉印飽和點對應臨界單位板寬軋制力的影響

      Figure  11.  Influence of different factors on the critical rolling force per unit width at the saturation point of rolling transfer when work roll Ra < strip Ra

      圖  12  工作輥Ra = 帶鋼Ra時不同軋制力下帶鋼表面微觀形貌的遺傳和演變規律

      Figure  12.  Inheritance and evolution of strip surface morphology under different rolling forces when work roll Ra = strip Ra

      表  1  兩種典型帶鋼表面微觀形貌軋制與板寬方向二維輪廓粗糙度參數

      Table  1.   Roughness parameters of two-dimensional profile along the width and rolling direction of two kinds of typical strip surface microtopography

      Roughness parametersCoordinatesaxisElectrical discharge machiningGrinding machine
      1234Mean value1234Mean value
      Ra/μmX-axis1.181.021.050.991.060.580.570.490.520.54
      Y-axis1.211.041.011.081.080.320.220.340.200.27
      Rz/μmX-axis5.785.825.896.435.984.234.374.825.104.63
      Y-axis6.215.976.056.206.112.012.342.812.452.40
      Ry/μmX-axis6.095.986.056.456.144.354.434.875.144.70
      Y-axis6.306.286.126.396.272.102.443.012.762.58
      Pc/cm?1X-axis60455652539782878087
      Y-axis55554350511079511790102
      下載: 導出CSV

      表  2  工業實驗工況表

      Table  2.   Industrial experiment condition

      Working
      condition
      Incoming strip
      Ra/μm
      Work roll
      Ra/μm
      Rolling force/
      (kN?mm?1)
      10.632.452.0
      20.632.452.5
      30.673.032.0
      40.673.032.5
      50.673.033.0
      下載: 導出CSV

      表  3  模型計算帶鋼表面粗糙度參數與實驗實測值對比

      Table  3.   Comparison between model calculation parameters of strip surface roughness and experimental values

      Working conditionRa/μmRz/μmRy/μmPc/cm?1
      MCAR/%MCAR/%MCAR/%MCAR/%
      11.0341.0930.0595.714.2444.4640.2205.184.2514.5010.2505.88687022.94
      21.2031.2550.0524.325.9735.8260.1472.465.9975.8440.1532.55707000
      31.1551.1350.0201.735.3225.1280.1943.655.3945.2020.1923.56626023.23
      41.2621.2840.0221.745.7485.8890.1412.455.8525.9220.071.20666069.09
      51.4511.4400.0110.767.5927.8460.2543.357.6077.8610.2543.34656057.69
      Note:M—measured value;C—calculated value;A—absolute error;R—relative error.
      下載: 導出CSV

      表  4  帶鋼表面粗糙度遺傳和演變規律計算工況

      Table  4.   Calculation condition of genetic and evolution rule of strip surface roughness

      Working conditionStrip Ra/μmWork roll Ra/μm
      Work roll Ra > Strip Ra13.5
      Work roll Ra ≈ Strip Ra11
      Work roll Ra < Strip Ra10.5
      下載: 導出CSV
      中文字幕在线观看
    • [1] Zhang Q D, Zhang B Y, Li R, et al. Advances in theory and technology for microscopic surface quality control of steel strip. J Mech Eng, 2016, 52(10): 32 doi: 10.3901/JME.2016.10.032

      張清東, 張勃洋, 李瑞, 等. 鋼板微觀表面質量控制理論與技術研究進展. 機械工程學報, 2016, 52(10):32 doi: 10.3901/JME.2016.10.032
      [2] Zhang Q D, Zhang B Y, Li R, et al. Control of surface glossiness during temper rolling aimed at improving visual aesthetics of tinplate. J Mech Eng, 2016, 52(14): 48 doi: 10.3901/JME.2016.14.048

      張清東, 張勃洋, 李瑞, 等. 鍍錫鋼板表面光澤度軋制轉印控制. 機械工程學報, 2016, 52(14):48 doi: 10.3901/JME.2016.14.048
      [3] Xu D, Li H B, Zhang J, et al. Surface topography multi-parameter analysis of textured rolls in cold temper mill. J Cent South Univ Sci Technol, 2014, 45(3): 734

      徐冬, 李洪波, 張杰, 等. 冷軋平整機毛化輥表面形貌特征多參數對比分析. 中南大學學報(自然科學版), 2014, 45(3):734
      [4] Wang Q Y, Zhu Y, Guo S, et al. Research on mixed lubrication characteristics of strip mill based on surface roughness features of rolling interface. J Cent South Univ Sci Technol, 2019, 50(1): 83 doi: 10.11817/j.issn.1672-7207.2019.01.012

      王橋醫, 朱媛, 過山, 等. 基于軋制界面表面粗糙度特征的板帶軋機混合潤滑特性研究. 中南大學學報(自然科學版), 2019, 50(1):83 doi: 10.11817/j.issn.1672-7207.2019.01.012
      [5] Sun R S, Wang J, Liu Y M, et al. The control measure of the surface topography on the cold rolling strip//Proceedings of 11th China Iron & Steel Annual Meeting. Beijing, 2017: 1

      孫榮生, 王靜, 劉英明, 等. 冷連軋機組軋后鋼板表面形貌的控制//第十一屆中國鋼鐵年會論文集. 北京, 2017: 1
      [6] You Y, Li H B, Xia C Y, et al. Experimental and mathematical model study of attenuation process of the surface roughness of textured work rolls during cold rolling. J Mech Eng, 2018, 54(12): 173 doi: 10.3901/JME.2018.12.173

      尤媛, 李洪波, 夏春雨, 等. 冷軋毛化工作輥表面粗糙度衰減過程的試驗與數學模型研究. 機械工程學報, 2018, 54(12):173 doi: 10.3901/JME.2018.12.173
      [7] Li R, Zhang Q D, Zhang X F, et al. Control method for steel strip roughness in two-stand temper mill rolling. Chin J Mech Eng, 2015, 28(3): 573 doi: 10.3901/CJME.2015.0310.027
      [8] Zhang Q D, Zhang B Y, Ma L, et al. Surface roughness rolling-transfer regularity and prediction model of high strength steel strips. Chin J Eng, 2016, 38(1): 118

      張清東, 張勃洋, 馬磊, 等. 高強度帶鋼表面粗糙度軋制轉印規律及預測模型. 工程科學學報, 2016, 38(1):118
      [9] Bai Z H, Wang J F. Control technique for surface roughness of strip in cold tandem rolling. Iron Steel, 2006, 41(11): 46 doi: 10.3321/j.issn:0449-749X.2006.11.013

      白振華, 王駿飛. 冷連軋機成品板面粗糙度控制技術的研究. 鋼鐵, 2006, 41(11):46 doi: 10.3321/j.issn:0449-749X.2006.11.013
      [10] Plouraboué F, Boehm M. Multiscale roughness transfer in cold metal rolling. Tribol Int, 1999, 32(1): 45 doi: 10.1016/S0301-679X(99)00013-4
      [11] Dick K, Lenard J G. The effect of roll roughness and lubricant viscosity on the loads on the mill during cold rolling of steel strips. J Mater Process Technol, 2005, 168(1): 16 doi: 10.1016/j.jmatprotec.2004.09.091
      [12] Jiang Z Y, Tieu A K. Contact mechanism and work roll wear in cold rolling thin strip. Wear, 2007, 263(7-12): 1447 doi: 10.1016/j.wear.2006.12.068
      [13] Chen J S, Li C S, Cao Y. Effects of roll roughness on surface and process parameters for stainless-steel strip. J Mech Eng, 2013, 49(4): 30 doi: 10.3901/JME.2013.04.030

      陳金山, 李長生, 曹勇. 軋輥粗糙度對不銹鋼板帶表面和工藝參數的影響. 機械工程學報, 2013, 49(4):30 doi: 10.3901/JME.2013.04.030
      [14] Xu D, Yang Q, Wang X C, et al. Influence of lubrication film thickness on transfer of surface topography at cold rolling interface. J Harbin Inst Technol, 2017, 49(1): 160 doi: 10.11918/j.issn.0367-6234.2017.01.024

      徐冬, 楊荃, 王曉晨, 等. 冷軋界面油膜厚度對表面形貌轉印過程的影響. 哈爾濱工業大學學報, 2017, 49(1):160 doi: 10.11918/j.issn.0367-6234.2017.01.024
      [15] Gao X C. Study on control technology of cold rolled strip roughness. Bengang Technol, 2013(1): 31

      高興昌. 冷軋帶鋼表面粗糙度的影響因素與復制率研究. 本鋼技術, 2013(1):31
      [16] Zhang J K, Zhou X M, Jiang J. Analysis of the rolling transfer fabrication of cold rolled steel strip surface micro-topography. Met World, 2018(3): 34 doi: 10.3969/j.issn.1000-6826.2018.03.09

      張佳康, 周曉敏, 蔣靖. 冷軋帶鋼表面微觀形貌軋制轉印規律分析. 金屬世界, 2018(3):34 doi: 10.3969/j.issn.1000-6826.2018.03.09
      [17] Jing Y A, Zang X M, Shang Q Y, et al. Evolution of surface morphologies of piece in process of cold rolling. Steel Roll, 2015, 32(1): 31

      井玉安, 臧曉明, 商秋月, 等. 酸洗冷軋過程中軋件表面形貌演變規律研究. 軋鋼, 2015, 32(1):31
      [18] Shi J Y, McElwain D L S, Domanti S A. Some surface profiles of a strip after plane-strain indentation by rigid bodies with serrated surfaces. J Mater Process Technol, 2002, 124(1-2): 227 doi: 10.1016/S0924-0136(02)00177-2
      [19] Wu C H, Zhang L C, Qu P L, et al. A new method for predicting the three-dimensional surface texture transfer in the skin pass rolling of metal strips. Wear, 2019, 426-427: 1246 doi: 10.1016/j.wear.2018.12.020
      [20] Giarola A M, Pereira P H R, Stemler P A, et al. Strain heterogeneities in the rolling direction of steel sheets submitted to the skin pass: A finite element analysis. J Mater Process Technol, 2015, 216: 234 doi: 10.1016/j.jmatprotec.2014.09.015
      [21] Zhang X F, Li R, Zhang B Y, et al. Model for the generation of surface topography in steel strip temper rolling. J Mech Eng, 2013, 49(14): 38 doi: 10.3901/JME.2013.14.038

      張曉峰, 李瑞, 張勃洋, 等. 平整軋制過程中帶鋼表面形貌的生成模型. 機械工程學報, 2013, 49(14):38 doi: 10.3901/JME.2013.14.038
      [22] Mishra M, Egberts P, Bennewitz R, et al. Friction model for single-asperity elastic-plastic contacts. Phys Rev B, 2012, 86(4): 045452 doi: 10.1103/PhysRevB.86.045452
      [23] Poulios K, Klit P. Implementation and applications of a finite-element model for the contact between rough surfaces. Wear, 2013, 303(1-2): 1 doi: 10.1016/j.wear.2013.02.024
      [24] Mulvihill D M, Kartal M E, Nowell D, et al. An elastic–plastic asperity interaction model for sliding friction. Tribol Int, 2011, 44(12): 1679 doi: 10.1016/j.triboint.2011.06.018
      [25] Le H R, Sutcliffe M P F. Finite element modelling of the evolution of surface pits in metal forming processes. J Mater Process Technol, 2004, 145(3): 391 doi: 10.1016/j.jmatprotec.2003.09.007
      [26] Xu D, Zhang J, Li H B, et al. Influence factors and control strategy of cold rolled strip surface roughness. J Cent South Univ Sci Technol, 2017, 48(1): 112 doi: 10.11817/j.issn.1672-7207.2017.01.016

      徐冬, 張杰, 李洪波, 等. 冷軋帶鋼表面粗糙度影響因素及控制策略. 中南大學學報(自然科學版), 2017, 48(1):112 doi: 10.11817/j.issn.1672-7207.2017.01.016
    • 加載中
    圖(12) / 表(4)
    計量
    • 文章訪問數:  1256
    • HTML全文瀏覽量:  627
    • PDF下載量:  45
    • 被引次數: 0
    出版歷程
    • 收稿日期:  2020-08-25
    • 網絡出版日期:  2021-01-12
    • 刊出日期:  2021-10-12

    目錄

      /

      返回文章
      返回