• 《工程索引》(EI)刊源期刊
    • 中文核心期刊
    • 中國科技論文統計源期刊
    • 中國科學引文數據庫來源期刊

    留言板

    尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

    姓名
    郵箱
    手機號碼
    標題
    留言內容
    驗證碼

    基于微振動監測的AFT廠房結構–漿液耦合振動特性

    宋波 李邦 肖楠 勞俊

    宋波, 李邦, 肖楠, 勞俊. 基于微振動監測的AFT廠房結構–漿液耦合振動特性[J]. 工程科學學報, 2022, 44(7): 1255-1264. doi: 10.13374/j.issn2095-9389.2020.10.04.002
    引用本文: 宋波, 李邦, 肖楠, 勞俊. 基于微振動監測的AFT廠房結構–漿液耦合振動特性[J]. 工程科學學報, 2022, 44(7): 1255-1264. doi: 10.13374/j.issn2095-9389.2020.10.04.002
    SONG Bo, LI Bang, XIAO Nan, LAO Jun. Fluid–structure interaction vibration characteristics of the AFT workshop structure based on micro-vibration monitoring[J]. Chinese Journal of Engineering, 2022, 44(7): 1255-1264. doi: 10.13374/j.issn2095-9389.2020.10.04.002
    Citation: SONG Bo, LI Bang, XIAO Nan, LAO Jun. Fluid–structure interaction vibration characteristics of the AFT workshop structure based on micro-vibration monitoring[J]. Chinese Journal of Engineering, 2022, 44(7): 1255-1264. doi: 10.13374/j.issn2095-9389.2020.10.04.002

    基于微振動監測的AFT廠房結構–漿液耦合振動特性

    doi: 10.13374/j.issn2095-9389.2020.10.04.002
    基金項目: 國家自然科學基金資助項目(52078038);科技部國家級外專項目(G2021105009L);“一帶一路”沿線國家土木工程防災國際協作中心與支持平臺搭建研究(2022KFYB012)
    詳細信息
      通訊作者:

      E-mail: y19801202162@163.com

    • 中圖分類號: TG142.71

    Fluid–structure interaction vibration characteristics of the AFT workshop structure based on micro-vibration monitoring

    More Information
    • 摘要: AFT氧化風機房是脫硫工藝中的一種鋼筋混凝土結構支撐鋼罐的復合結構,結構產生的明顯振動不利于正常生產運營,因此針對AFT結構進行現場監測和模擬計算。首先對AFT結構進行現場調查,基于一種AFT結構視頻監測與局部監測相結合的方法對其進行監測,隨后又提出簡化攪拌機及氧化風作用的模擬方法,通過數值模擬對AFT結構振動特性進行研究。結果表明:對AFT結構進行視頻監測可快速明確結構運動軌跡;局部監測結果表明攪拌機作用是結構振動的主要因素,氧化風的鼓入加劇了結構振動響應,因此造成了結構各柱間填充墻不同程度的損傷;將數值模擬結果與監測結果對比,驗證了簡化攪拌機及氧化風作用的計算方法,可為分析此類結構振動響應、損傷機制以及加固設計提供參考。

       

    • 圖  1  AFT結構現場圖

      Figure  1.  AFT structure site drawing

      圖  2  結構與設備的設置。(a)攪拌機與氧化風立面布置;(b)攪拌機平面布置

      Figure  2.  Structure and equipment set: (a) vertical layout of the mixer and the oxidation wind; (b) plane layout of the mixer

      圖  3  結構底部裂縫

      Figure  3.  Cracks at the bottom of the structure

      圖  4  結構背立面示意及視頻監測位置

      Figure  4.  Schematic diagram of the structure’s back elevation and the video monitoring position

      圖  5  S 點(a)和M點(b)運動軌跡

      Figure  5.  Motion track of S (a) and M points (b)

      圖  6  S、M點各個時刻的位移軌跡

      Figure  6.  Displacement tracks of S and M points at each time

      圖  7  AFT結構運動軌跡示意圖

      Figure  7.  Schematic diagram of the AFT structure movement track

      圖  8  加速度及位移測點布置圖。(a)底部B柱測點布置;(b)底部柱測點;(c)上部測點布置

      Figure  8.  Layout of acceleration and displacement measuring points: (a) layout of the measuring points of the B-pillar at the bottom; (b) bottom column measuring point; (c) arrangement of upper measuring points

      圖  9  鋼罐測點加速度時程(a)及位移時程曲線(b)

      Figure  9.  Time history curves of acceleration (a) and displacement (b)

      圖  10  鋼罐測點加速度(a)及位移峰值分布(b)

      Figure  10.  Peak distribution of the acceleration (a) and displacement (b) at measuring points of the steel tank

      圖  11  結構柱加速度頻譜分析

      Figure  11.  Spectrum analysis of the structural column acceleration

      圖  12  有無氧化風作用下結構位移對比。(a)結構各柱位移峰值對比;(b)結構B柱位移曲線對比

      Figure  12.  Comparison of the structural displacement with and without oxidation wind: (a) comparison of the peak displacement of each column; (b) comparison of displacement curves of the structural B column

      圖  13  B柱有無氧化風鼓入位移頻譜對比

      Figure  13.  Displacement spectrum comparison of the B column with or without blowing of the oxidation wind

      圖  14  AFT結構計算模型。(a)AFT- Structure模型;(b)AFT-CFD模型

      Figure  14.  AFT structural calculation model: (a) AFT structure model; (b) AFT-CFD model

      圖  15  沿罐高位移及加速度時程曲線。(a)工況b沿罐高的x向位移時程;(b)工況d沿罐高的位移時程;(c)工況b沿罐高加速度時程;(d)工況d沿罐高加速度時程

      Figure  15.  Displacement and acceleration time history curves along the tank height: (a) x-direction displacement time history of Conditionb along the tank height; (b) displacement time history of Conditiond along the tank height; (c) acceleration time history of working Conditionb along the tank height; (d) acceleration time history of working Conditiond along the tank height

      圖  16  工況d的AFT結構位移云圖

      Figure  16.  Displacement nephogram of the AFT structure in Condition d

      圖  17  各工況沿罐高的位移峰值(a)及加速度峰值(b)對比

      Figure  17.  Comparison of the peak values of displacement (a) and acceleration (b) along the tank height under different working conditions

      圖  18  結構柱各工況的位移峰值對比

      Figure  18.  Comparison of the peak displacement of the structural column under different working conditions

      圖  19  工況d頻譜圖。(a)位移頻譜;(b)加速度頻譜

      Figure  19.  Displacement (a) and acceleration spectra (b) of Condition d

      表  1  模型計算參數

      Table  1.   Model calculation parameters

      MaterialElastic modulus/PaDensity/(kg·m?3)Poisson's ratio
      Concrete3.1×101025500.2
      Steel2.06×101178500.3
      MaterialViscosityDensity
      Fluid0.021250
      下載: 導出CSV

      表  2  加載工況對比表

      Table  2.   Comparison of the loading case

      Working conditionIf there is oxidation windSimulation loading size of mixer/(m·s?1)
      aNo1
      bYes1
      cNo2
      dYes2
      下載: 導出CSV
      中文字幕在线观看
    • [1] Li Y, Yang Z Z. Influence of key factors on lime-gypsum wet flue gas desulfurization and two circulations per tower technology. Environ Eng, 2016, 34(1): 69

      李元, 楊志忠. 濕法煙氣脫硫關鍵影響因素及新型單塔雙循環技術. 環境工程, 2016, 34(1):69
      [2] Han P, Mao X J, Zhou L H, et al. Mechanism modeling for forced oxidation system of flue gas desulfurization device. J North China Electr Power Univ, 2006, 33(5): 60

      韓璞, 毛新靜, 周黎輝, 等. 濕法煙氣脫硫中強制氧化系統的機理建模. 華北電力大學學報, 2006, 33(5):60
      [3] Chen J. Single-and Multi-Phase Flow Dynamics Simulations of the Side-Entering Stirred Reactors [Dissertation]. Shanghai: East China University of Science and Technology, 2013

      陳佳. 側進式攪拌反應器內均相及多相流體動力學的數值研究[學位論文]. 上海: 華東理工大學, 2013
      [4] Xu G H, Gu X K. Investigation to the numerical simulation approach for sloshing in tanks considering fluid–structure interaction. J Ship Mech, 2012, 16(5): 514 doi: 10.3969/j.issn.1007-7294.2012.05.008

      徐國徽, 顧學康. 液艙晃蕩載荷數值模擬中的流固耦合影響研究. 船舶力學, 2012, 16(5):514 doi: 10.3969/j.issn.1007-7294.2012.05.008
      [5] Xu Y X, Shao C F, Zheng D J, et al. Diagnosis of abnormal structural vibration for Xiaoshunjiang pumping station // 15th Biennial ASCE Conference on Engineering, Science, Construction, and Operations in Challenging Environments. Florida, 2016: 943
      [6] Ding Y, Ma R, Li N. A simulation model for three-dimensional coupled wave-current flumes. Eng Mech, 2015, 32(10): 68 doi: 10.6052/j.issn.1000-4750.2014.03.0190

      丁陽, 馬瑞, 李寧. 三維波流耦合水槽模擬模型. 工程力學, 2015, 32(10):68 doi: 10.6052/j.issn.1000-4750.2014.03.0190
      [7] Shi Y, Shu G Q, Bi F R. Acoustic characteristics simulation of engine exhaust muffler based on CFD. J Vib Eng, 2011, 24(2): 205 doi: 10.3969/j.issn.1004-4523.2011.02.016

      石巖, 舒歌群, 畢鳳榮. 基于計算流體動力學的內燃機排氣消聲器聲學特性仿真. 振動工程學報, 2011, 24(2):205 doi: 10.3969/j.issn.1004-4523.2011.02.016
      [8] Bigoni C, Hesthaven J S. Simulation-based anomaly detection and damage localization: An application to structural health monitoring. Comput Methods Appl Mech Eng, 2020, 363: 112896 doi: 10.1016/j.cma.2020.112896
      [9] Limongelli M P, Giordano P F. Vibration-based damage indicators: A comparison based on information entropy. J Civ Struct Heal Monit, 2020, 10(2): 251 doi: 10.1007/s13349-020-00381-9
      [10] Wang X. The Reaction Process and Optimization of Flow Field in Slurry Pond of WFGD Towers [Dissertation]. Guangzhou: South China University of Technology, 2016

      王旭. 濕法煙氣脫硫塔漿液池內反應過程及流場優化[學位論文]. 廣州: 華南理工大學, 2016
      [11] Zhang C W. Analytical study of transient coupling between vessel motion and liquid sloshing in multiple tanks. J Eng Mech, 2016, 142(7): 04016034 doi: 10.1061/(ASCE)EM.1943-7889.0001085
      [12] Lu S S, Zhang Z F, Liu J B, et al. Passive suction and blowing flow control of wind-induced vibration of tall buildings. J Vib Shock, 2021, 40(11): 7

      盧姍姍, 張志富, 劉金博, 等. 高層建筑結構風致振動的被動吸吹氣流動控制研究. 振動與沖擊, 2021, 40(11):7
      [13] Li Z L, Zhang L Z, Zhu X D, et al. Design and validation of wireless dynamic testing system for bridge based on the 941B type vibration sensor // Ninth International Conference of Chinese Transportation Professionals (ICCTP). Harbin, 2009: 1
      [14] Shi Y C, Li S Q, Li Z X, et al. Rapid evaluation method for blast damage of reinforced concrete columns based on measured frequency. J Build Struct, 2021, 42(11): 155

      師燕超, 李紹琦, 李忠獻, 等. 基于實測頻率的鋼筋混凝土柱爆炸損傷快速評估方法. 建筑結構學報, 2021, 42(11):155
      [15] Jiang X L, Zhang C X, Jiang N, et al. Shaking table test method for equipment-structure dynamic interaction. J Vib Shock, 2019, 38(3): 108

      姜忻良, 張崇祥, 姜南, 等. 設備-結構動力相互作用振動臺試驗方法研究. 振動與沖擊, 2019, 38(3):108
      [16] Guo J, Zhu C A. Dynamic displacement measurement of large-scale structures based on the Lucas–Kanade template tracking algorithm. Mech Syst Signal Process, 2016, 66-67: 425 doi: 10.1016/j.ymssp.2015.06.004
      [17] Zhao C, Zhao J Y, Sun Q, et al. A study on identification of dynamic characteristic parameters of a transmission tower under ambient excitations. J Vib Shock, 2021, 40(4): 30

      趙超, 趙家鈺, 孫清, 等. 環境激勵下輸電塔動力特性參數識別. 振動與沖擊, 2021, 40(4):30
      [18] Zhu B R, Sun C, Huang Y. Ice-induced vibration response analysis of monopile offshore wind turbine. China Civ Eng J, 2021, 54(1): 88

      朱本瑞, 孫超, 黃焱. 海上單樁風機結構冰激振動響應分析. 土木工程學報, 2021, 54(1):88
      [19] Dong X F, Lian J J, Wang H J. Monitoring experiment and characteristic analysis of structural vibration of offshore wind turbine. J Tianjin Univ (Sci Technol), 2019, 52(2): 191

      董霄峰, 練繼建, 王海軍. 海上風機結構振動監測試驗與特性分析. 天津大學學報(自然科學與工程技術版), 2019, 52(2):191
      [20] Wang Y L, Yue Q J, Bi X J, et al. Ice-induced vibration control effectiveness evaluation for an offshore platform based on a field monitoring. J Vib Shock, 2012, 31(7): 39 doi: 10.3969/j.issn.1000-3835.2012.07.009

      王延林, 岳前進, 畢祥軍, 等. 基于現場監測的海洋平臺冰振控制效果評價. 振動與沖擊, 2012, 31(7):39 doi: 10.3969/j.issn.1000-3835.2012.07.009
      [21] Soman R, Kyriakides M, Onoufriou T, et al. Numerical evaluation of multi-metric data fusion based structural health monitoring of long span bridge structures. Struct Infrastructure Eng, 2018, 14(6): 673 doi: 10.1080/15732479.2017.1350984
      [22] Zhu B, Jiang N, Zhou C B, et al. Effect of excavation blast vibration on adjacent buried gas pipeline in a foundation pit. J Vib Shock, 2020, 39(11): 201

      朱斌, 蔣楠, 周傳波, 等. 基坑開挖爆破作用鄰近壓力燃氣管道動力響應特性研究. 振動與沖擊, 2020, 39(11):201
      [23] Qarib H, Mohamed D. Analysis, prediction, and mitigation of vortex induced vibrations in substation structures // Electrical Transmission and Substation Structures 2018. Atlanta, 2018: 191
      [24] Wu Q Q, Zhang L K, Ma Z Y, et al. Vibration characteristics of the unit–plant structure of a hydropower station under transient load-up process. J Vib Shock, 2019, 38(18): 53

      吳嵌嵌, 張雷克, 馬震岳, 等. 水電站機組–廠房結構突增負荷過渡過程振動特性研究. 振動與沖擊, 2019, 38(18):53
      [25] Chen G G, Zhang L J, Bai Y, et al. Numerical simulation of the influence of the agitator parameter on the field characteristics and the power in a side-entering stirred reactor. J Beijing Univ Chem Technol (Nat Sci Ed), 2012, 39(3): 29

      陳功國, 張林進, 柏楊, 等. 側入式攪拌槽中槳葉參數對流場及功率影響的數值模擬. 北京化工大學學報(自然科學版), 2012, 39(3):29
    • 加載中
    圖(19) / 表(2)
    計量
    • 文章訪問數:  474
    • HTML全文瀏覽量:  316
    • PDF下載量:  101
    • 被引次數: 0
    出版歷程
    • 收稿日期:  2020-10-04
    • 網絡出版日期:  2021-08-12
    • 刊出日期:  2022-07-01

    目錄

      /

      返回文章
      返回