• 《工程索引》(EI)刊源期刊
    • 中文核心期刊
    • 中國科技論文統計源期刊
    • 中國科學引文數據庫來源期刊

    留言板

    尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

    姓名
    郵箱
    手機號碼
    標題
    留言內容
    驗證碼

    堆存溫度對半水磷石膏膠凝性能影響

    王志凱 王貽明 吳愛祥 李根 李劍秋

    王志凱, 王貽明, 吳愛祥, 李根, 李劍秋. 堆存溫度對半水磷石膏膠凝性能影響[J]. 工程科學學報, 2022, 44(5): 840-848. doi: 10.13374/j.issn2095-9389.2020.11.13.001
    引用本文: 王志凱, 王貽明, 吳愛祥, 李根, 李劍秋. 堆存溫度對半水磷石膏膠凝性能影響[J]. 工程科學學報, 2022, 44(5): 840-848. doi: 10.13374/j.issn2095-9389.2020.11.13.001
    WANG Zhi-kai, WANG Yi-ming, WU Ai-xiang, LI Gen, LI Jian-qiu. Effect of storage temperature on the cementitious property of hemihydrate phosphogypsum[J]. Chinese Journal of Engineering, 2022, 44(5): 840-848. doi: 10.13374/j.issn2095-9389.2020.11.13.001
    Citation: WANG Zhi-kai, WANG Yi-ming, WU Ai-xiang, LI Gen, LI Jian-qiu. Effect of storage temperature on the cementitious property of hemihydrate phosphogypsum[J]. Chinese Journal of Engineering, 2022, 44(5): 840-848. doi: 10.13374/j.issn2095-9389.2020.11.13.001

    堆存溫度對半水磷石膏膠凝性能影響

    doi: 10.13374/j.issn2095-9389.2020.11.13.001
    基金項目: 國家自然科學基金資助項目(51674012)
    詳細信息
      通訊作者:

      E-mail: ustbwym@126.com

    • 中圖分類號: TD853

    Effect of storage temperature on the cementitious property of hemihydrate phosphogypsum

    More Information
    • 摘要: 半水磷石膏(HPG)長時間堆存狀態下會出現固結現象,其膠凝性能也相應下降。以室內HPG結晶水檢測和單軸壓縮試驗為基礎,通過設定4種不同堆存溫度,分別為20,40,60和80 ℃,探究不同堆存溫度作用下HPG試樣結晶水質量分數變化和堆存后制備的充填膠凝材料(HCM)抗壓強度發展規律,并采用掃描電鏡等微觀分析手段研究堆存溫度對其強度影響機制。結果表明,堆存溫度對HPG膠凝性能影響顯著,高的堆存溫度會加快HPG試樣中的自由水轉變為結晶水速率,而且會抑制堆存后制備的HCM強度發展。采用數據標準化對不同堆存溫度作用后的試樣抗壓強度作出預測,被證實與實測值較吻合。微觀分析發現,堆存溫度主要影響體系的過飽和度,而使不同堆存溫度作用后制備的HCM微觀形態表現差異。

       

    • 圖  1  HPG的礦物組成和微觀形貌分析。(a)HPG的X射線衍射圖;(b)HPG的微觀結構圖

      Figure  1.  Mineral composition and micromorphology analysis of HPG: (a) X-ray diffraction pattern of HPG; (b) microstructure of HPG

      圖  2  HPG粒徑分布

      Figure  2.  Particle size distribution of HPG

      圖  3  室內小型堆體模型

      Figure  3.  Indoor small pile model

      圖  4  不同堆存溫度HPG結晶水質量分數變化過程

      Figure  4.  Variation process of the HPG crystal water mass fraction at different storage temperatures

      圖  5  不同堆存溫度HCM試樣強度發展過程

      Figure  5.  Strength development process of HCM specimens at different storage temperatures

      圖  6  不同堆存溫度下HPG膠凝性能標準化。(a)HPG結晶水質量分數標準化;(b)HCM強度標準化

      Figure  6.  Standardization of HPG properties at different storage temperatures: (a) standardization of HPG crystal water mass fraction; (b) standardization of HCM strength

      圖  7  試樣標準化強度發展曲線斜率與截距誤差。(a)斜率誤差(3~90 d);(b)截距誤差(3~90 d)

      Figure  7.  Slope and intercept error of the standardized strength development curve of the specimen: (a) slope error (3–90 d); (b) intercept error (3–90 d)

      圖  8  強度預測方程驗證

      Figure  8.  Strength prediction equation verification

      圖  9  不同堆存溫度下HCM微觀結構圖。(a)20 ℃;(b)40 ℃;(c)60 ℃;(d)80 ℃

      Figure  9.  HCM microstructure of different storage temperatures: (a) 20 ℃; (b) 40 ℃; (c) 60 ℃; (d) 80 ℃

      圖  10  硬化過程示意圖

      Figure  10.  Schematic diagram of the hardening process

      表  1  HPG化學成份及含水率測定結果表(質量分數)

      Table  1.   Hemihydrate phosphogypsum’s chemical composition and moisture content %

      CaOAl2O3SiO2P2O5MgOFe2O3SO3SrOlossFree waterCrystal water
      37.862.464.201.370.280.4544.820.360.2022.105.40
      下載: 導出CSV
      中文字幕在线观看
    • [1] Cai M F, Xue D L, Ren F H. Current status and development strategy of metal mines. Chin J Eng, 2019, 41(4): 417

      蔡美峰, 薛鼎龍, 任奮華. 金屬礦深部開采現狀與發展戰略. 工程科學學報, 2019, 41(4):417
      [2] Wu A X, Li H, Cheng H Y, et al. Status and prospects of researches on rheology of paste backfill using unclassified-tailings (Part 1): concepts, characteristics and models. Chin J Eng, 2020, 42(7): 803

      吳愛祥, 李紅, 程海勇, 等. 全尾砂膏體流變學研究現狀與展望(上): 概念、特性與模型. 工程科學學報, 2020, 42(7):803
      [3] Sun X W, Wu T J. Experimental research of alkali-activated slag cementitious material. Bull Chin Ceram Soc, 2014, 33(11): 3036

      孫小巍, 吳陶俊. 堿激發礦渣膠凝材料的試驗研究. 硅酸鹽通報, 2014, 33(11):3036
      [4] Liang Z Q. Review on development and application of new type backfilling cementing materials in mining industry. Met Mine, 2015(6): 164 doi: 10.3969/j.issn.1001-1250.2015.06.035

      梁志強. 新型礦山充填膠凝材料的研究與應用綜述. 金屬礦山, 2015(6):164 doi: 10.3969/j.issn.1001-1250.2015.06.035
      [5] Zhang G C, Yang Z Q, Gao Q, et al. Development of early strength filling cementing material with phosphogypsum as substitute of traditional cement. Met Mine, 2015(3): 194

      張光存, 楊志強, 高謙, 等. 利用磷石膏開發替代水泥的早強充填膠凝材料. 金屬礦山, 2015(3):194
      [6] Li J Q, Li Z J, Wang J C, et al. Development status and prospect of phosphogypsum filling material and technique. Mod Min, 2018(10): 1 doi: 10.3969/j.issn.1674-6082.2018.10.001

      李劍秋, 李子軍, 王佳才, 等. 磷石膏充填材料與技術發展現狀及展望. 現代礦業, 2018(10):1 doi: 10.3969/j.issn.1674-6082.2018.10.001
      [7] Wang Y M, Wang Z K, Wu A X, et al. Preparation of new cementitious backfilling material and its curing mechanism analysis. Met Mine, 2018(6): 20

      王貽明, 王志凱, 吳愛祥, 等. 新型膠凝充填材料制備及固化機理分析. 金屬礦山, 2018(6):20
      [8] Lan W T, Wu A X, Wang Y M, et al. Optimization of filling ratio of hemihydrate phosphogypsum based on orthogonal test. Chin J Nonferrous Met, 2019, 29(5): 1083

      蘭文濤, 吳愛祥, 王貽明, 等. 基于正交試驗的半水磷石膏充填配比優化. 中國有色金屬學報, 2019, 29(5):1083
      [9] Lan W T, Wu A X, Wang Y M. Formulation optimization and formation mechanism of condensate expansion and filling composites. Acta Mater Compos Sin, 2019, 36(6): 1536

      蘭文濤, 吳愛祥, 王貽明. 凝水膨脹充填復合材料的配比優化與形成機制. 復合材料學報, 2019, 36(6):1536
      [10] Jiang G Z, Wu A X, Wang Y M, et al. Effect of lime on properties of filling cementitious material prepared by hemihydrate phosphogypsum. J Chin Ceram Soc, 2020, 48(1): 86

      姜關照, 吳愛祥, 王貽明, 等. 生石灰對半水磷石膏充填膠凝材料性能影響. 硅酸鹽學報, 2020, 48(1):86
      [11] Lan W T, Wu A X, Wang Y M, et al. Ionic solidification and size effect of hemihydrate phosphogypsum backfill. China Environ Sci, 2019, 39(1): 210 doi: 10.3969/j.issn.1000-6923.2019.01.024

      蘭文濤, 吳愛祥, 王貽明, 等. 半水磷石膏充填體離子固化與尺寸效應. 中國環境科學, 2019, 39(1):210 doi: 10.3969/j.issn.1000-6923.2019.01.024
      [12] Yang B. Study on the Process of Hydrothermal Treatment of Phosphogypsum [Dissertation]. Kunming: Kunming University of Science and Technology, 2006

      楊斌. 水熱法處理磷石膏過程研究[學位論文]. 昆明: 昆明理工大學, 2006
      [13] Lan W T, Wu A X, Wang Y M, et al. Experimental study on influencing factors of the filling strength of hemihydrate phosphogypsum. J Harbin Inst Technol, 2019, 51(8): 128 doi: 10.11918/j.issn.0367-6234.201804082

      蘭文濤, 吳愛祥, 王貽明, 等. 半水磷石膏充填強度影響因素試驗. 哈爾濱工業大學學報, 2019, 51(8):128 doi: 10.11918/j.issn.0367-6234.201804082
      [14] Yang L, Cao J X, Liu Y M. Mineralogical characteristics of hemi-hydrate phosphogypsum. Acta Petrol Mineral, 2015, 34(6): 827 doi: 10.3969/j.issn.1000-6524.2015.06.005

      楊林, 曹建新, 劉亞明. 半水磷石膏的礦物學特征. 巖石礦物學雜志, 2015, 34(6):827 doi: 10.3969/j.issn.1000-6524.2015.06.005
      [15] Chitambira B. Accelerated Ageing of Cement Stabilised/Solidified Contaminated Soils with Elevated Temperatures [Dissertation]. Cambridge: Cambridge University, 2004
      [16] Zhang R J, Zheng J J, Cheng Y S, et al. Experimental investigation on effect of curing temperature on strength development of cement stabilized clay. Rock Soil Mech, 2016, 37(12): 3463

      章榮軍, 鄭俊杰, 程鈺詩, 等. 養護溫度對水泥固化淤泥強度影響試驗研究. 巖土力學, 2016, 37(12):3463
      [17] Morohoshi K, Yoshinaga K, Miyata M, et al. Design and long-term monitoring of Tokyo International Airport extension project constructed on super-soft ground. Geotech Geol Eng, 2010, 28(3): 223 doi: 10.1007/s10706-010-9312-x
      [18] Yao S, Han B, Wu A X, et al. The effect of temperature on strength of wet shotcrete in cold mining areas and its engineering application. J Min Saf Eng, 2017, 34(2): 384

      姚松, 韓斌, 吳愛祥, 等. 溫度對高寒礦山濕噴混凝土強度影響規律及工程應用研究. 采礦與安全工程學報, 2017, 34(2):384
      [19] Wang D X, Gao X Y, Zou W L, et al. Study on strength predication of reactive MgO-slag/fly ash stabilized clay considering high temperature effect. J Huazhong Univ Sci Technol Nat Sci Ed, 2019, 47(6): 92

      王東星, 高向雲, 鄒維列, 等. 高溫效應下MgO-礦粉/粉煤灰固化土強度預測. 華中科技大學學報(自然科學版), 2019, 47(6):92
      [20] Yang C J, Yang M, Cao J X. Study on hydration and hardening of duplex gypsum binder of hemihydrite phosphogypsum and anhydrite phosphogypsum. Non-Metallic Mines, 2014(6): 22 doi: 10.3969/j.issn.1000-8098.2014.06.008

      楊成軍, 楊敏, 曹建新. 半水/無水磷石膏復相膠凝材料水化硬化特性研究. 非金屬礦, 2014(6):22 doi: 10.3969/j.issn.1000-8098.2014.06.008
      [21] Zhang J L. Research on the Effects of Water-reducing Agents on the Hydration and Setting of α-Calcium Sulfate Hemihydrates [Dissertation]. Hangzhou: Zhejiang University, 2008

      張佳莉. 減水劑對α半水石膏水化硬化過程的影響研究[學位論文]. 杭州: 浙江大學, 2008
      [22] Lin Z S. Cementitious Materials Science. Wuhan: Wuhan University of Technology Press, 2014

      林宗壽. 膠凝材料學. 武漢: 武漢理工大學出版社, 2014
      [23] Lan W T. Research on Hemihydrate Phosphogypsum Based Mineral Filling Composites and Its Pipe Flow Performance [Dissertation]. Beijing: University of Science and Technology Beijing, 2019

      蘭文濤. 半水磷石膏基礦用復合充填材料及其管輸特性研究[學位論文]. 北京: 北京科技大學, 2019
      [24] Jiang G Z, Wu A X, Wang Y M, et al. Low cost and high efficiency utilization of hemihydrate phosphogypsum: Used as binder to prepare filling material. Constr Build Mater, 2018, 167: 263 doi: 10.1016/j.conbuildmat.2018.02.022
      [25] Rong K W, Lan W T, Li H Y. Industrial experiment of goaf filling using the filling materials based on hemihydrate phosphogypsum. Minerals, 2020, 10(4): 324 doi: 10.3390/min10040324
    • 加載中
    圖(10) / 表(1)
    計量
    • 文章訪問數:  4072
    • HTML全文瀏覽量:  422
    • PDF下載量:  51
    • 被引次數: 0
    出版歷程
    • 收稿日期:  2020-11-13
    • 網絡出版日期:  2020-12-23
    • 刊出日期:  2022-05-25

    目錄

      /

      返回文章
      返回