• 《工程索引》(EI)刊源期刊
    • 中文核心期刊
    • 中國科技論文統計源期刊
    • 中國科學引文數據庫來源期刊

    留言板

    尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

    姓名
    郵箱
    手機號碼
    標題
    留言內容
    驗證碼

    基于ALBERT與雙向GRU的中醫臟腑定位模型

    張德政 范欣欣 謝永紅 蔣彥釗

    張德政, 范欣欣, 謝永紅, 蔣彥釗. 基于ALBERT與雙向GRU的中醫臟腑定位模型[J]. 工程科學學報, 2021, 43(9): 1182-1189. doi: 10.13374/j.issn2095-9389.2021.01.13.002
    引用本文: 張德政, 范欣欣, 謝永紅, 蔣彥釗. 基于ALBERT與雙向GRU的中醫臟腑定位模型[J]. 工程科學學報, 2021, 43(9): 1182-1189. doi: 10.13374/j.issn2095-9389.2021.01.13.002
    ZHANG De-zheng, FAN Xin-xin, XIE Yong-hong, JIANG Yan-zhao. Localization model of traditional Chinese medicine Zang-fu based on ALBERT and Bi-GRU[J]. Chinese Journal of Engineering, 2021, 43(9): 1182-1189. doi: 10.13374/j.issn2095-9389.2021.01.13.002
    Citation: ZHANG De-zheng, FAN Xin-xin, XIE Yong-hong, JIANG Yan-zhao. Localization model of traditional Chinese medicine Zang-fu based on ALBERT and Bi-GRU[J]. Chinese Journal of Engineering, 2021, 43(9): 1182-1189. doi: 10.13374/j.issn2095-9389.2021.01.13.002

    基于ALBERT與雙向GRU的中醫臟腑定位模型

    doi: 10.13374/j.issn2095-9389.2021.01.13.002
    基金項目: 國家重點研發計劃云計算和大數據專項資助項目(2017YFB1002304)
    詳細信息
      通訊作者:

      E-mail: xieyh@ustb.edu.cn

    • 中圖分類號: TP391.1

    Localization model of traditional Chinese medicine Zang-fu based on ALBERT and Bi-GRU

    More Information
    • 摘要: 臟腑定位,即明確病變所在的臟腑,是中醫臟腑辨證的重要階段。本文旨在通過神經網絡模型搭建中醫臟腑定位模型,輸入癥狀文本信息,輸出對應的病變臟腑標簽,為實現中醫輔助診療的臟腑辨證提供支持。將中醫的臟腑定位問題建模為自然語言處理中的多標簽文本分類問題,基于中醫的醫案數據,提出一種基于預訓練模型ALBERT和雙向門控循環單元(Bi-GRU)的臟腑定位模型。對比實驗和消融實驗的結果表明,本文提出的方法在中醫臟腑定位的問題上相比于多層感知機模型、決策樹模型具有更高的準確性,與Word2Vec文本表示方法相比,本文使用的ALBERT預訓練模型的文本表示方法有效提升了模型的準確率。在模型參數上,ALBERT預訓練模型相比BERT模型降低了模型參數量,有效減小了模型大小。最終,本文提出的臟腑定位模型在測試集上F1值達到了0.8013。

       

    • 圖  1  臟腑定位模型結構

      Figure  1.  Zang-fu localization model structure

      圖  2  ALBERT模型結構

      Figure  2.  ALBERT model structure

      圖  3  GRU單元

      Figure  3.  GRU unit

      圖  4  雙向GRU模型示意圖

      Figure  4.  Bi-GRU model diagram

      表  1  臟腑定位數據格式

      Table  1.   Zang-fu location data format

      No.SymptomsTag
      1Legs ache, and wake up unable to sleep, along with hemoptysis and a sore throatspleen, kidney, heart
      2The patient had high blood pressure, weakness in the right limb, and pain in the left upper armliver, kidney
      下載: 導出CSV

      表  2  訓練過程中的參數

      Table  2.   Parameters in the training process

      Parameter nameParameter value
      Max_seq_lenth128
      GRU_units128
      Dropout0.4
      Learning_rate1×10?4
      Epochs10
      Batch_size128
      下載: 導出CSV

      表  3  多標簽分類對比實驗結果

      Table  3.   Comparative experimental results of multiple label classification

      No.MethodPrecisionRecallF1-value
      1Word2Vec+Bi-GRU0.80150.76530.7830
      2MLP Classifier0.70910.70670.7079
      3Decision Tree Classifier0.67440.66330.6688
      4ALBERT+Bi-GRU0.83010.77450.8013
      下載: 導出CSV

      表  4  BERT與ALBERT對比實驗結果

      Table  4.   Comparative experimental results of BERT and ALBERT

      IdMethodPrecisionRecallF1-valueTime/sModel_
      parameters/
      MB
      1BERT+Bi-GRU0.82530.77830.801199.8219363.3
      2ALBERT+Bi-GRU0.83010.77450.801384.704537.3
      下載: 導出CSV

      表  5  多標簽分類消融實驗結果

      Table  5.   Ablation experiment multiple label classification results

      MethodPrecisionRecallF1-value
      ALBERT0.77110.73150.7508
      ALBERT+Bi-GRU0.83010.77450.8013
      下載: 導出CSV
      中文字幕在线观看
    • [1] Xu Q. Mining the Syndrome Factor Distribution of AECOPD by the Attribution Model Built by Directed Graph [Dissertation]. Chengdu: Chengdu University of TCM, 2017

      許強. 基于有向圖的證素歸因模型挖掘AECOPD的證素分布規律[學位論文]. 成都: 成都中醫藥大學, 2017
      [2] Yin D, Zhou L, Zhou Y M, et al. Study on design of graph search pattern of knowledge graph of TCM classic prescriptions. Chin J Inf Tradit Chin Med, 2019, 26(8): 94 doi: 10.3969/j.issn.1005-5304.2019.08.019

      尹丹, 周璐, 周雨玫, 等. 中醫經方知識圖譜“圖搜索模式”設計研究. 中國中醫藥信息雜志, 2019, 26(8):94 doi: 10.3969/j.issn.1005-5304.2019.08.019
      [3] Liu C, Gao J L, Dong Y, et al. Study on TCM syndrome differentiation and diagnosis model based on BP neural network for syndrome elements and their common combinations in patients with borderline coronary lesion. Chin J Inf Tradit Chin Med, 2021, 28(3): 104

      劉超, 高嘉良, 董艷, 等. 基于BP神經網絡的冠狀動脈臨界病變患者證候要素及其常見組合中醫辨證診斷模型研究. 中國中醫藥信息雜志, 2021, 28(3):104
      [4] Chu N. Research on Hybrid Intelligent Based Syndrome Differentiation System for Traditional Chinese Medicine [Dissertation]. Shanghai: Shanghai Jiaotong University, 2012

      褚娜. 基于混合智能的中醫辨證系統研究[學位論文]. 上海: 上海交通大學, 2012
      [5] Yang K M. Research on Clinical Data Mining Technology of Diabetes TCM [Dissertation]. Kunming: Kunming University of Science and Technology, 2013

      楊開明. 糖尿病中醫臨床數據挖掘技術研究[學位論文]. 昆明: 昆明理工大學, 2013
      [6] Zhou L, Li G G, Sun Y, et al. Construction of intelligent syndrome differentiation and formula selection of compound structure model. World Chin Med, 2018, 13(2): 479 doi: 10.3969/j.issn.1673-7202.2018.02.057

      周璐, 李光庚, 孫燕, 等. 復合結構智能化辨證選方模型的構建. 世界中醫藥, 2018, 13(2):479 doi: 10.3969/j.issn.1673-7202.2018.02.057
      [7] Shu X, Cao Y, Huang X, et al. Construction of prediction model of qi deficiency syndrome in acute ischemic stroke based on neural network analysis technique. Glob Tradit Chin Med, 2019, 12(11): 1650 doi: 10.3969/j.issn.1674-1749.2019.11.007

      舒鑫, 曹云, 黃幸, 等. 基于神經網絡分析技術的急性缺血性卒中氣虛證預測模型構建的研究. 環球中醫藥, 2019, 12(11):1650 doi: 10.3969/j.issn.1674-1749.2019.11.007
      [8] Shen C B, Wang Z H, Sun Y G. A multi-label classification algorithm based on label clustering. Comput Eng Softw, 2014, 35(8): 16 doi: 10.3969/j.issn.1003-6970.2014.08.004

      申超波, 王志海, 孫艷歌. 基于標簽聚類的多標簽分類算法. 軟件, 2014, 35(8):16 doi: 10.3969/j.issn.1003-6970.2014.08.004
      [9] Huang Z Q. Multi-Label Classification and Label Completion Algorithm Based on K-Means [Dissertation]. Anqing: Anqing Normal University, 2020

      黃志強. 基于K-means的多標簽分類及標簽補全算法[學位論文]. 安慶: 安慶師范大學, 2020
      [10] Li D Y, Luo F, Wang S G. A multi-label emotion classification method for Chinese text based on CNN and tag features. J Shanxi Univ Nat Sci Ed, 2020, 43(1): 65

      李德玉, 羅鋒, 王素格. 融合CNN和標簽特征的中文文本情緒多標簽分類. 山西大學學報(自然科學版), 2020, 43(1):65
      [11] Joulin A, Grave E, Bojanowski P, et al. Bag of Tricks for Efficient Text Classification // Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics. Valencia, 2017: 427
      [12] Yi S X, Yin H P, Zheng H Y. Public security event trigger identification based on Bidirectional LSTM. Chin J Eng, 2019, 41(9): 1201

      易士翔, 尹宏鵬, 鄭恒毅. 基于BiLSTM的公共安全事件觸發詞識別. 工程科學學報, 2019, 41(9):1201
      [13] Chen G B, Ye D H, Xing Z C, et al. Ensemble application of convolutional and recurrent neural networks for multi-label text categorization // 2017 International Joint Conference on Neural Networks (IJCNN). Anchorage, 2017: 2377
      [14] Yogatama D, Dyer C, Ling W, et al. Generative and discriminative text classification with recurrent neural networks[J/OL]. ArXiv Preprin (2017-03-06) [2020-12-29]. https://arxiv.org/abs/1703.01898v1
      [15] Wang B X. Disconnected Recurrent Neural Networks for Text Categorization // Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics. Melbourne, 2018: 2311
      [16] Kim Y. Convolutional Neural Networks for Sentence Classification // Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP). Doha, 2014: 1746
      [17] Mikolov T, Sutskever I, Chen K, et al. Distributed representations of words and phrases and their compositionality[J/OL]. arXiv preprint (2013-10-16) [2021-5-22]. https://arxiv.org/abs/1310.4546
      [18] Pennington J, Socher R, Manning C. Glove: Global Vectors for Word Representation // Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP). Doha, 2014: 1532
      [19] Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need [J/OL]. arXiv preprint (2017-6-12) [2021-5-22]. https://arxiv.org/abs/1706.03762
      [20] Devlin J, Chang M W, Lee K, et al. BERT: Pre-Training of Deep Bidirectional Transformers for Language Understanding. //Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics. Minneapolis, Minnesota, 2018: 4171
      [21] Yang Z L, Dai Z H, Yang Y M, et al. Xlnet: Generalized autoregressive pretraining for language understanding[J/OL]. arXiv preprint (2019-6-19) [2021-5-23]. https://arxiv.org/abs/1906.08237
      [22] Liu Y, Ott M, Goyal N, et al. Roberta: A robustly optimized bert pretraining approach[J/OL]. arXiv preprint (2019-07-26) [2020-12-29]. http://arxiv.org/abs/1907.11692
      [23] Sanh V, Debut L, Chaumond J, et al. DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter[J/OL]. arXiv preprint (2019-10-02) [2020-12-29]. http://arxiv.org/abs/1910.01108
      [24] Lei J S, Qian Y. Chinese-text classification method based on ERNIE-BiGRU. J Shanghai Univ Electr Power, 2020, 36(4): 329 doi: 10.3969/j.issn.2096-8299.2020.04.003

      雷景生, 錢葉. 基于ERNIE-BiGRU模型的中文文本分類方法. 上海電力大學學報, 2020, 36(4):329 doi: 10.3969/j.issn.2096-8299.2020.04.003
      [25] Lan Z Z, Chen M, Goodman S, et al. ALBERT: A lite BERT for self-supervised learning of language representations. //ICLR 2020 : Eighth International Conference on Learning Representations. Addis Ababa, 2020
      [26] Chung J, Gulcehre C, Cho K, et al. Empirical evaluation of gated recurrent neural networks on sequence modeling [J/OL]. ArXiv Preprin (2018-08-13) [2020-12-29]. http://arxiv.org/abs/1412.3555
    • 加載中
    圖(4) / 表(5)
    計量
    • 文章訪問數:  761
    • HTML全文瀏覽量:  559
    • PDF下載量:  71
    • 被引次數: 0
    出版歷程
    • 收稿日期:  2021-01-13
    • 網絡出版日期:  2021-03-02
    • 刊出日期:  2021-09-18

    目錄

      /

      返回文章
      返回