• 《工程索引》(EI)刊源期刊
    • 中文核心期刊
    • 中國科技論文統計源期刊
    • 中國科學引文數據庫來源期刊

    留言板

    尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

    姓名
    郵箱
    手機號碼
    標題
    留言內容
    驗證碼

    難熔高熵合金:制備方法與性能綜述

    宗樂 徐流杰 羅春陽 魏世忠

    宗樂, 徐流杰, 羅春陽, 魏世忠. 難熔高熵合金:制備方法與性能綜述[J]. 工程科學學報, 2021, 43(11): 1459-1473. doi: 10.13374/j.issn2095-9389.2021.01.27.003
    引用本文: 宗樂, 徐流杰, 羅春陽, 魏世忠. 難熔高熵合金:制備方法與性能綜述[J]. 工程科學學報, 2021, 43(11): 1459-1473. doi: 10.13374/j.issn2095-9389.2021.01.27.003
    ZONG Le, XU Liu-jie, LUO Chun-yang, WEI Shi-zhong. Refractory high-entropy alloys: A review of preparation methods and properties[J]. Chinese Journal of Engineering, 2021, 43(11): 1459-1473. doi: 10.13374/j.issn2095-9389.2021.01.27.003
    Citation: ZONG Le, XU Liu-jie, LUO Chun-yang, WEI Shi-zhong. Refractory high-entropy alloys: A review of preparation methods and properties[J]. Chinese Journal of Engineering, 2021, 43(11): 1459-1473. doi: 10.13374/j.issn2095-9389.2021.01.27.003

    難熔高熵合金:制備方法與性能綜述

    doi: 10.13374/j.issn2095-9389.2021.01.27.003
    基金項目: 國家自然科學基金資助項目(U1704152)
    詳細信息
      通訊作者:

      E-mail:wmxlj@126.com

    • 中圖分類號: TG132.3+2

    Refractory high-entropy alloys: A review of preparation methods and properties

    More Information
    • 摘要: 從加工方法、微觀結構以及各類性能三方面介紹了難熔高熵合金(Refractory high-entropy alloys,RHEAs),最后對難熔高熵合金的發展和未來進行了展望。以MoNbTaVW為代表的難熔高熵合金在高溫下表現出優于傳統鎳基高溫合金的壓縮屈服強度,且屈服強度隨溫度的變化更加緩慢,高溫力學性能優異;以MoNbTaVW、MoNbTaTiZr、HfNbTiZr等為代表的難熔高熵合金,與商用高溫合金、難熔金屬、難熔合金以及工具鋼相比,展現出更優的耐磨性能。以W38Ta36Cr15V11合金為代表的難熔高熵合金在輻照后,除了析出小顆粒第二相外,不存在位錯環缺陷結構,抗輻照性能優異。提出了難熔高熵合金未來發展的兩大方向:建立高通量的實驗和計算方法繼續探索更多的難熔高熵合金組成和結構模型;探索多場耦合環境下難熔高熵合金的服役行為。

       

    • 圖  1  高熵合金的制備方法

      Figure  1.  Preparation method of high-entropy alloys

      圖  2  電弧爐熔煉原理[10]

      Figure  2.  Schematic diagram of the arc melting method[10]

      圖  3  磁控濺射原理圖[13]

      Figure  3.  Schematic illustration of the magnetron sputtering process[13]

      圖  4  不同顏色沉積薄膜的宏觀照片[8]

      Figure  4.  Macro-photograph of deposited thin films of different colors[8]

      圖  5  難熔高熵合金拋光截面的背散射電子像掃描電鏡研究[41]。(a)NbTaTiV;(b)NbTaVW;(c)NbTaTiVW

      Figure  5.  Backscattered scanning electron microscopy image of polished cross-sections of refractory high-entropy alloys [41]: (a) NbTaTiV; (b) NbTaVW; (c) NbTaTiV

      圖  6  WMoNbTa和WMoNbTaV兩種難熔高熵合金和傳統高溫合金屈服強度隨溫度的變化曲線[11]

      Figure  6.  Yield strength curves of WMoNbTa and WMoNbTaV alloys and traditional superalloys with temperature[11]

      圖  7  AlMo0.5NbTa0.5TiZr的掃描透射電子顯微鏡(STEM)圖像和快速傅立葉變換[42]

      Figure  7.  Scanning transmission electron microscopy (STEM) image of AlMo0.5NbTa0.5TiZr and fast Fourier transforms[42]

      圖  8  鑄態TaxHfZrTi高熵合金的XRD衍射圖譜和EBSD照片[39]

      Figure  8.  XRD patterns and EBSD images of the as-cast TaxHfZrTi[39]

      圖  9  鑄態TiZrHfNb、(TiZrHfNb)98O2和(TiZrHfNb)98N2的高能同步加速器X射線衍射圖(a)和電子背散射衍射圖(b),(TiZrHfNb)98O2沿[011]軸的球差矯正掃描電子顯微鏡高角度環形暗場圖(c)和原子序數對比度圖(d),以及相應的球差矯正掃描電子顯微鏡環形亮場圖(e),(e)中的插圖是有序間隙原子復合體的放大視圖[43]

      Figure  9.  Synchrotron high-energy X-ray diffraction (a) and the corresponding electron back-scattering diffraction patterns (b) of the as-cast TiZrHfNb, (TiZrHfNb)98O2 and (TiZrHfNb)98N2; scanning transmission electron microscope high-angle annular dark field images (c) for [011] axis, Z-contrast of the scanning transmission electron microscope high-angle annular dark field image (d) and the corresponding scanning transmission electron microscope-annular bright field image (e) that reveals the ordered oxygen complexes; the inset in (e) is an enlarged view of the ordered oxygen complexes[43]

      圖  10  難熔高熵合金與傳統高溫合金的壓縮屈服強度與溫度的關系[44]

      Figure  10.  Relationship between the compressive yield strength and temperature of refractory high-entropy alloys and the traditional superalloy[44]

      圖  11  部分難熔高熵合金與常用金屬的硬度比較[18, 26, 31, 41, 45-51]

      Figure  11.  Comparison of Vickers hardness between several refractory high-entropy alloys and common metals[18, 26, 31, 41, 45-51]

      圖  12  不同條件下MoTaWNbV和Inconel 718的體積損失(左)和磨損率(右)的對比圖[55],用鋼球和氧化鋁球進行400 m (a)和1000 m (b)滑動距離測試

      Figure  12.  Comparative diagrams of the volume loss (left) and the wear rate (right) of MoTaWNbV versus Inconel 718 under different conditions[55],tested with both an alumina and a steel ball for sliding distances of 400 m (a), 1000 m (b)

      圖  13  MoTaNbZrTi合金磨損表面收集的碎片的掃描電子顯微鏡圖,用鋼球(a, b, c)和氧化鋁球(d, e, f)分別滑動(a和d)400 m;(b和e)1000 m和(c和f)2000 m[57]

      Figure  13.  Scanning electron microscope images of the debris collected from the worn surface of MoTaNbZrTi tested with a steel ball (a, b, c) and an alumina ball (d, e, f) for the sliding distances of (a and d) 400 m; (b and e) 1000 m; and (c and f) 2000 m[57]

      圖  14  HfNbTiZr合金在500 mN恒定載荷下劃痕形貌的掃描探針顯微鏡圖(a)和對應的3D圖(b),純Nb和C103以及(a)中所示的橫截面輪廓(c)[58]

      Figure  14.  Scanning probe microscopy image showing the topography of the scratch track of the HfNbTiZr alloy under a constant load testing at 500 mN (a), the corresponding 3D view (b), and cross-section profiles (c) as indicated in the pure Nb and C103 alloy as well as (a)[58]

      圖  15  在1300℃下氧化10 h的RHEAs外部氧化膜橫截面的背散射電子圖像[21]。(a)NbCrMoTiAl0.5;(b)NbCrMoVAl0.5;(c)NbCrMoTiVAl0.5;(d)NbCrMoTiVAl0.5Si0.3

      Figure  15.  Backscattered electron microscopy images showing the cross sections of the outer oxide scales of the RHEAs oxidized at 1300 ℃ for 10 h[21]: (a) NbCrMoTiAl0.5; (b) NbCrMoVAl0.5; (c) NbCrMoTiVAl0.5; (d) NbCrMoTiVAl0.5Si0.3

      圖  16  背散射電子圖像顯示難熔高熵合金氧化層中的大尺寸孔隙[21]。(a)NbCrMoVAl0.5;(b)NbCrMoTiVAl0.5

      Figure  16.  BSE images showing the large-size pores in the oxide scales of the refractory high-entropy alloys[21]: (a) NbCrMoVAl0.5; (b) NbCrMoTiVAl0.5

      圖  17  在1073 K、不同dpa速率下,原位1 MeV Kr+2輻照W38Ta36Cr15V11的亮場透射電鏡照片[66]

      Figure  17.  Bright-field transmission electron microscopy micrographs as a function of dpa of in situ 1 MeV Kr+2-irradiated W38Ta36Cr15V11 at 1073 K using different dpa rates[66]

      表  1  近幾年難熔高熵合金的結構特征及制備工藝

      Table  1.   Structural characteristics and preparation technology of refractory high-entropy alloys in recent years

      Phase structureElemental compositionPreparation technology
      BCCWMoNbTa[11]As-cast
      WMoNbTaV[11]As-cast
      TaNbHfZrTi[14-15]Hot isostatic pressing
      NbTiVTa[16]As-cast
      NbTiVTaAl0.25[16]As-cast
      NbTiVTaAl0.5[16]As-cast
      NbTiVTaAl[16]As-cast
      TiZrNbMoVx(x=0~3)[17]As-cast
      NbTiVZr[18-19]Hot isostatic pressing
      HfNbTiZr[20]Annealed
      NbCrMoTiAl0.5[21]As-cast
      NbCrMoVAl0.5[21]As-cast
      NbCrMoTiVAl0.5[21]As-cast
      AlNb1.5Ta0.5Ti1.5Zr0.5[22]Hot isostatic pressing
      Al0.3NbTa0.8Ti1.4V0.2Zr1.3[22]Hot isostatic pressing
      Al0.4Hf0.6NbTaTiZr[22-23]Hot isostatic pressing
      AlNbTiV[24]Annealed
      HfMoTaTiZr[25]As-cast
      HfMoNbTaTiZr[25]As-cast
      TaNbHfZr[26]As-cast
      NbMoCrTiAl[27]Mechanical alloying and spark plasma sintering
      WMoNbTa[5]Mechanical alloying and spark plasma sintering
      WMoNbTaV[5]Mechanical alloying and spark plasma sintering
      MoNbTaTiV[28]As-cast
      MoNbTaTiW[29]As-cast
      HfMoTiWZr[30]As-cast
      AlCrMoTi[31]As-cast
      AlMoNbTi[31]As-cast
      BCC+LavesCrNbTiZr[18-19]Hot isostatic pressing
      CrNbTiVZr[18-19]Hot isostatic pressing
      TiZrHfNbV[32]Annealed
      TiZr0.5NbCr0.5[33]As-cast
      TiZr0.5NbCr0.5Mo[33]As-cast
      TiZr0.5NbCr0.5V[33]As-cast
      AlCrMoTiW[34]As-cast
      AlCrMoTaTi[35]As-cast
      BCC+B2AlMo0.5NbTa0.5TiZr[36-37]Hot isostatic pressing
      Al0.5Mo0.5NbTa0.5TiZr[38]Hot isostatic pressing
      Al0.25NbTaTiZr[38]Hot isostatic pressing
      B2AlNbTa0.25TiZr0.25[38]Hot isostatic pressing
      BCC+HCPHfTaTiZr[39]As-cast
      HfTa0.4TiZr[39]As-cast
      HfTa0.5TiZr[39]As-cast
      HfTa0.6TiZr[39]As-cast
      FCC+L12W0.5Ni2Co2VMo0.5[40]As-cast
      W0.5Ni2Co2VCr0.5[40]As-cast
      W0.5Ni2Co2CrMo0.5[40]As-cast
      下載: 導出CSV
      中文字幕在线观看
    • [1] Yeh J W, Chen S K, Lin S J, et al. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Adv Eng Mater, 2004, 6(5): 299 doi: 10.1002/adem.200300567
      [2] Yeh J W, Lin S J, Chin T S, et al. Formation of simple crystal structures in Cu?Co?Ni?Cr?Al?Fe?Ti?V alloys with multiprincipal metallic elements. Metall Mater Trans A, 2004, 35(8): 2533 doi: 10.1007/s11661-006-0234-4
      [3] Tsai Y L, Wang S F, Bor H Y, et al. Effects of alloy elements on microstructure and creep properties of fine-grained nickel-based superalloys at moderate temperatures. Mater Sci Eng A, 2013, 571: 155 doi: 10.1016/j.msea.2013.02.002
      [4] Yang X N, Deng W L, Huang X B, et al. Research on preparation methods of high-entropy alloy. Hot Work Technol, 2014, 43(22): 30

      楊曉寧, 鄧偉林, 黃曉波, 等. 高熵合金制備方法進展. 熱加工工藝, 2014, 43(22):30
      [5] Guo W J. Microstructure and Mechanical Properties of NbMoTaW(V) High-Entropy Alloy Prepared by Mechanical Alloying [Dissertation]. Guangzhou: South China University of Technology, 2016

      郭文晶. 機械合金化NbMoTaW(V)高熔點高熵合金的組織及其性能[學位論文]. 廣州: 華南理工大學, 2016
      [6] Liu Y, Zhang Y, Zhang H, et al. Microstructure and mechanical properties of refractory HfMo0.5NbTiV0.5 Six high-entropy composites. J Alloys Compd, 2017, 694: 869 doi: 10.1016/j.jallcom.2016.10.014
      [7] He C J, Liu X J, Zhang P, et al. Applications of powder metallurgy technology in high-entropy materials. Chin J Eng, 2019, 41(12): 1501

      何春靜, 劉雄軍, 張盼, 等. 粉末冶金在高熵材料中的應用. 工程科學學報, 2019, 41(12):1501
      [8] Sheng W J, Yang X, Wang C, et al. Nano-crystallization of high-entropy amorphous NbTiAlSiWxNy films prepared by magnetron sputtering. Entropy, 2016, 18(6): 226 doi: 10.3390/e18060226
      [9] Xin W, Wang Y J, Wei S C, et al. Research progress of the preparation of high entropy alloy coatings by spraying. Chin J Eng, 2021, 43(2): 170

      辛蔚, 王玉江, 魏世丞, 等. 熱噴涂制備高熵合金涂層的研究現狀與展望. 工程科學學報, 2021, 43(2):170
      [10] Chen Y Y, Duval T, Hung U D, et al. Microstructure and electrochemical properties of high entropy alloys—a comparison with type-304 stainless steel. Corros Sci, 2005, 47(9): 2257 doi: 10.1016/j.corsci.2004.11.008
      [11] Senkov O N, Wilks G B, Scott J M, et al. Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys. Intermetallics, 2011, 19(5): 698 doi: 10.1016/j.intermet.2011.01.004
      [12] Han Z D, Luan H W, Liu X, et al. Microstructures and mechanical properties of TixNbMoTaW refractory high-entropy alloys. Mater Sci Eng A, 2018, 712: 380 doi: 10.1016/j.msea.2017.12.004
      [13] Yan X H, Li J S, Zhang W R, et al. A brief review of high-entropy films. Mater Chem Phys, 2018, 210: 12 doi: 10.1016/j.matchemphys.2017.07.078
      [14] Senkov O N, Scott J M, Senkova S V, et al. Microstructure and room temperature properties of a high-entropy TaNbHfZrTi alloy. J Alloys Compd, 2011, 509(20): 6043 doi: 10.1016/j.jallcom.2011.02.171
      [15] Senkov O N, Scott J M, Senkova S V, et al. Microstructure and elevated temperature properties of a refractory TaNbHfZrTi alloy. J Mater Sci, 2012, 47(9): 4062 doi: 10.1007/s10853-012-6260-2
      [16] Yang X, Zhang Y, Liaw P K. Microstructure and compressive properties of NbTiVTaAlx high entropy alloys. Procedia Eng, 2012, 36: 292 doi: 10.1016/j.proeng.2012.03.043
      [17] Zhang Y, Yang X, Liaw P K. Alloy design and properties optimization of high-entropy alloys. JOM, 2012, 64(7): 830 doi: 10.1007/s11837-012-0366-5
      [18] Senkov O N, Senkova S V, Miracle D B, et al. Mechanical properties of low-density, refractory multi-principal element alloys of the Cr?Nb?Ti?V?Zr system. Mater Sci Eng A, 2013, 565: 51 doi: 10.1016/j.msea.2012.12.018
      [19] Senkov O N, Senkova S V, Woodward C, et al. Low-density, refractory multi-principal element alloys of the Cr?Nb?Ti?V?Zr system: Microstructure and phase analysis. Acta Mater, 2013, 61(5): 1545 doi: 10.1016/j.actamat.2012.11.032
      [20] Wu Y D, Cai Y H, Wang T, et al. A refractory Hf25Nb25Ti25Zr25 high-entropy alloy with excellent structural stability and tensile properties. Mater Lett, 2014, 130: 277 doi: 10.1016/j.matlet.2014.05.134
      [21] Liu C M, Wang H M, Zhang S Q, et al. Microstructure and oxidation behavior of new refractory high entropy alloys. J Alloys Compd, 2014, 583: 162 doi: 10.1016/j.jallcom.2013.08.102
      [22] Senkov O N, Woodward C, Miracle D B. Microstructure and properties of aluminum-containing refractory high-entropy alloys. JOM, 2014, 66(10): 2030 doi: 10.1007/s11837-014-1066-0
      [23] Senkov O N, Senkova S V, Woodward C. Effect of aluminum on the microstructure and properties of two refractory high-entropy alloys. Acta Mater, 2014, 68: 214 doi: 10.1016/j.actamat.2014.01.029
      [24] Stepanov N D, Shaysultanov D G, Salishchev G A, et al. Structure and mechanical properties of a light-weight AlNbTiV high entropy alloy. Mater Lett, 2015, 142: 153 doi: 10.1016/j.matlet.2014.11.162
      [25] Juan C C, Tsai M H, Tsai C W, et al. Enhanced mechanical properties of HfMoTaTiZr and HfMoNbTaTiZr refractory high-entropy alloys. Intermetallics, 2015, 62: 76 doi: 10.1016/j.intermet.2015.03.013
      [26] Maiti S, Steurer W. Structural-disorder and its effect on mechanical properties in single-phase TaNbHfZr high-entropy alloy. Acta Mater, 2016, 106: 87 doi: 10.1016/j.actamat.2016.01.018
      [27] Yan J H, Li K L, Wang Y, et al. NbMoCrTiAl high-entropy alloy prepared by mechanical alloying and spark plasma sintering. Mater Rep, 2019, 33(10): 1671 doi: 10.11896/cldb.18020113

      顏建輝, 李凱玲, 汪異, 等. 機械合金化和放電等離子燒結制備NbMoCrTiAl高熵合金. 材料導報, 2019, 33(10):1671 doi: 10.11896/cldb.18020113
      [28] Yao H W, Qiao J W, Hawk J A, et al. Mechanical properties of refractory high-entropy alloys: experiments and modeling. J Alloys Compd, 2017, 696: 1139 doi: 10.1016/j.jallcom.2016.11.188
      [29] Han Z D, Chen N, Zhao S F, et al. Effect of Ti additions on mechanical properties of NbMoTaW and VNbMoTaW refractory high entropy alloys. Intermetallics, 2017, 84: 153 doi: 10.1016/j.intermet.2017.01.007
      [30] Karantzalis A E, Poulia A, Georgatis E, et al. Phase formation criteria assessment on the microstructure of a new refractory high entropy alloy. Scr Mater, 2017, 131: 51 doi: 10.1016/j.scriptamat.2017.01.004
      [31] Chen H, Kauffmann A, Laube S, et al. Contribution of lattice distortion to solid solution strengthening in a series of refractory high entropy alloys. Metall Mater Trans A, 2018, 49(3): 772 doi: 10.1007/s11661-017-4386-1
      [32] Fazakas é, Zadorozhnyy V, Varga L K, et al. Experimental and theoretical study of Ti20Zr20Hf20Nb20X20 (X=V or Cr) refractory high-entropy alloys. Int J Refract Met Hard Mater, 2014, 47: 131 doi: 10.1016/j.ijrmhm.2014.07.009
      [33] Li J M, Yang X, Zhu R L, et al. Corrosion and serration behaviors of TiZr0.5NbCr0.5VxMoy high entropy alloys in aqueous environments. Metals, 2014, 4(4): 597 doi: 10.3390/met4040597
      [34] Gorr B, Azim M, Christ H J, et al. Phase equilibria, microstructure, and high temperature oxidation resistance of novel refractory high-entropy alloys. J Alloys Compd, 2015, 624: 270 doi: 10.1016/j.jallcom.2014.11.012
      [35] Gorr B, Müller F, Azim M, et al. High-temperature oxidation behavior of refractory high-entropy alloys: Effect of alloy composition. Oxid Met, 2017, 88(3-4): 339 doi: 10.1007/s11085-016-9696-y
      [36] Senkov O N, Isheim D, Seidman D N, et al. Development of a refractory high entropy superalloy. Entropy, 2016, 18(3): 102 doi: 10.3390/e18030102
      [37] Jensen J K, Welk B A, Williams R E A, et al. Characterization of the microstructure of the compositionally complex alloy Al1Mo0.5Nb1Ta0.5Ti1Zr1. Scr Mater, 2016, 121: 1 doi: 10.1016/j.scriptamat.2016.04.017
      [38] Senkov O N, Jensen J K, Pilchak A L, et al. Compositional variation effects on the microstructure and properties of a refractory high-entropy superalloy AlMo0.5NbTa0.5TiZr. Mater Des, 2018, 139: 498 doi: 10.1016/j.matdes.2017.11.033
      [39] Huang H L, Wu Y, He J Y, et al. Phase-transformation ductilization of brittle high-entropy alloys via metastability engineering. Adv Mater, 2017, 29(30): 1701678 doi: 10.1002/adma.201701678
      [40] Jiang H, Jiang L, Lu Y P, et al. Microstructure and mechanical properties of the W-Ni-Co system refractory high-entropy alloys. Mater Sci Forum, 2015, 816: 324 doi: 10.4028/www.scientific.net/MSF.816.324
      [41] Yao H W, Qiao J W, Gao M C, et al. NbTaV-(Ti, W) refractory high-entropy alloys: Experiments and modeling. Mater Sci Eng A, 2016, 674: 203 doi: 10.1016/j.msea.2016.07.102
      [42] Sosa J M, Jensen J K, Huber D E, et al. Three-dimensional characterisation of the microstructure of an high entropy alloy using STEM/HAADF tomography. Mater Sci Technol, 2015, 31(10): 1250 doi: 10.1179/1743284715Y.0000000049
      [43] Lei Z F, Liu X J, Wu Y, et al. Enhanced strength and ductility in a high-entropy alloy via ordered oxygen complexes. Nature, 2018, 563(7732): 546 doi: 10.1038/s41586-018-0685-y
      [44] Diao H Y, Xie X, Sun F, et al. Mechanical properties of high-entropy alloys. High-Entropy Alloys, 2016: 181
      [45] Waseem O A, Lee J, Lee H M, et al. The effect of Ti on the sintering and mechanical properties of refractory high-entropy alloy TixWTaVCr fabricated via spark plasma sintering for fusion plasma-facing materials. Mater Chem Phys, 2018, 210: 87 doi: 10.1016/j.matchemphys.2017.06.054
      [46] Zhang B, Gao M C, Zhang Y, et al. Senary refractory high-entropy alloy CrxMoNbTaVW. Calphad, 2015, 51: 193 doi: 10.1016/j.calphad.2015.09.007
      [47] Zhang Y, Zuo T T, Tang Z, et al. Microstructures and properties of high-entropy alloys. Prog Mater Sci, 2014, 61: 1 doi: 10.1016/j.pmatsci.2013.10.001
      [48] Chen S, Yang X, Dahmen K, et al. Microstructures and crackling noise of AlxNbTiMoV high entropy alloys. Entropy, 2014, 16(2): 870 doi: 10.3390/e16020870
      [49] Qiao D X, Jiang H, Chang X X, et al. Microstructure and mechanical properties of VTaTiMoAlx refractory high entropy alloys. Mater Sci Forum, 2017, 898: 638 doi: 10.4028/www.scientific.net/MSF.898.638
      [50] Gao M C, Zhang B, Yang S, et al. Senary refractory high-entropy alloy HfNbTaTiVZr. Metall Mater Trans A, 2016, 47(7): 3333 doi: 10.1007/s11661-015-3105-z
      [51] Zhang B, Gao M C, Zhang Y, et al. Senary refractory high entropy alloy MoNbTaTiVW. Mater Sci Technol, 2015, 31(10): 1207 doi: 10.1179/1743284715Y.0000000031
      [52] Wei S Z, Xu L J. Review on research progress of steel and iron wear-resistant materials. Acta Metall Sin, 2020, 56(4): 523 doi: 10.11900/0412.1961.2019.00370

      魏世忠, 徐流杰. 鋼鐵耐磨材料研究進展. 金屬學報, 2020, 56(4):523 doi: 10.11900/0412.1961.2019.00370
      [53] Liu X T, Lei W B, Ma L J, et al. Effect of boron on the microstructure, phase assemblage and wear properties of Al05CoCrCuFeNi high-entropy alloy. Rare Met Mater Eng, 2016, 45(9): 2201 doi: 10.1016/S1875-5372(17)30003-6
      [54] Tong C J, Chen M R, Yeh J W, et al. Mechanical performance of the AlxCoCrCuFeNi high-entropy alloy system with multiprincipal elements. Metall Mater Trans A, 2005, 36: 1263 doi: 10.1007/s11661-005-0218-9
      [55] Poulia A, Georgatis E, Lekatou A, et al. Dry-sliding wear response of MoTaWNbV high entropy alloy. Adv Eng Mater, 2017, 19(2): 1600535 doi: 10.1002/adem.201600535
      [56] Poulia A, Georgatis E, Lekatou A, et al. Microstructure and wear behavior of a refractory high entropy alloy. Int J Refract Met Hard Mater, 2016, 57: 50 doi: 10.1016/j.ijrmhm.2016.02.006
      [57] Mathiou C, Poulia A, Georgatis E, et al. Microstructural features and dry - Sliding wear response of MoTaNbZrTi high entropy alloy. Mater Chem Phys, 2018, 210: 126 doi: 10.1016/j.matchemphys.2017.08.036
      [58] Ye Y X, Liu C Z, Wang H, et al. Friction and wear behavior of a single-phase equiatomic TiZrHfNb high-entropy alloy studied using a nanoscratch technique. Acta Mater, 2018, 147: 78 doi: 10.1016/j.actamat.2018.01.014
      [59] Grigoriev S N, Sobol O V, Beresnev V M, et al. Tribological characteristics of (TiZrHfVNbTa)N coatings applied using the vacuum arc deposition method. J Frict Wear, 2014, 35(5): 359 doi: 10.3103/S1068366614050067
      [60] Jayaraj J, Thinaharan C, Ningshen S, et al. Corrosion behavior and surface film characterization of TaNbHfZrTi high entropy alloy in aggressive nitric acid medium. Intermetallics, 2017, 89: 123 doi: 10.1016/j.intermet.2017.06.002
      [61] Wang S P, Xu J. TiZrNbTaMo high-entropy alloy designed for orthopedic implants: as-cast microstructure and mechanical properties. Mater Sci Eng C, 2017, 73: 80 doi: 10.1016/j.msec.2016.12.057
      [62] Senkov O N, Senkova S V, Dimiduk D M, et al. Oxidation behavior of a refractory NbCrMo0.5Ta0.5TiZr alloy. J Mater Sci, 2012, 47(18): 6522 doi: 10.1007/s10853-012-6582-0
      [63] Gorr B, Mueller F, Christ H J, et al. High temperature oxidation behavior of an equimolar refractory metal-based alloy 20Nb?20Mo?20Cr?20Ti?20Al with and without Si addition. J Alloys Compd, 2016, 688: 468
      [64] Li T X, Lu Y P, Cao Z Q, et al. Opportunity and challenge of refractory high-entropy alloys in the field of reactor structural materials. Acta Metall Sin, 2021, 57(1): 42 doi: 10.11900/0412.1961.2020.00293

      李天昕, 盧一平, 曹志強, 等. 難熔高熵合金在反應堆結構材料領域的機遇與挑戰. 金屬學報, 2021, 57(1):42 doi: 10.11900/0412.1961.2020.00293
      [65] Egami T, Guo W, Rack P D, et al. Irradiation resistance of multicomponent alloys. Metall Mater Trans A, 2014, 45(1): 180 doi: 10.1007/s11661-013-1994-2
      [66] El-Atwani O, Li N, Li M, et al. Outstanding radiation resistance of tungsten-based high-entropy alloys. Sci Adv, 2019, 5(3): eaav2002 doi: 10.1126/sciadv.aav2002
      [67] Lu Y P, Huang H F, Gao X Z, et al. A promising new class of irradiation tolerant materials: Ti2ZrHfV0.5Mo0.2 high-entropy alloy. J Mater Sci Technol, 2019, 35(3): 369 doi: 10.1016/j.jmst.2018.09.034
      [68] Waseem O A, Ryu H J. Powder metallurgy processing of a WxTaTiVCr high-entropy alloy and its derivative alloys for fusion material applications. Sci Rep, 2017, 7: 1926 doi: 10.1038/s41598-017-02168-3
    • 加載中
    圖(17) / 表(1)
    計量
    • 文章訪問數:  3689
    • HTML全文瀏覽量:  1123
    • PDF下載量:  611
    • 被引次數: 0
    出版歷程
    • 收稿日期:  2021-01-27
    • 網絡出版日期:  2021-03-10
    • 刊出日期:  2021-11-25

    目錄

      /

      返回文章
      返回