• 《工程索引》(EI)刊源期刊
    • 中文核心期刊
    • 中國科技論文統計源期刊
    • 中國科學引文數據庫來源期刊

    留言板

    尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

    姓名
    郵箱
    手機號碼
    標題
    留言內容
    驗證碼

    基于機器學習的產品質量在線智能監控方法

    徐鋼 黎敏 呂志民 徐金梧

    徐鋼, 黎敏, 呂志民, 徐金梧. 基于機器學習的產品質量在線智能監控方法[J]. 工程科學學報, 2022, 44(4): 730-743. doi: 10.13374/j.issn2095-9389.2021.06.22.001
    引用本文: 徐鋼, 黎敏, 呂志民, 徐金梧. 基于機器學習的產品質量在線智能監控方法[J]. 工程科學學報, 2022, 44(4): 730-743. doi: 10.13374/j.issn2095-9389.2021.06.22.001
    XU Gang, LI Min, Lü Zhi-min, XU Jin-wu. Online intelligent product quality monitoring method based on machine learning[J]. Chinese Journal of Engineering, 2022, 44(4): 730-743. doi: 10.13374/j.issn2095-9389.2021.06.22.001
    Citation: XU Gang, LI Min, Lü Zhi-min, XU Jin-wu. Online intelligent product quality monitoring method based on machine learning[J]. Chinese Journal of Engineering, 2022, 44(4): 730-743. doi: 10.13374/j.issn2095-9389.2021.06.22.001

    基于機器學習的產品質量在線智能監控方法

    doi: 10.13374/j.issn2095-9389.2021.06.22.001
    基金項目: 國家自然科學基金資助項目(51004013, 51204018)
    詳細信息
      通訊作者:

      E-mail: jwxu@ustb.edu.cn

    • 中圖分類號: TP274

    Online intelligent product quality monitoring method based on machine learning

    More Information
    • 摘要: 為了提高產品質量的穩定性和可靠性,利用機器學習方法實現產品質量在線監控、在線優化和在線預設定,是鋼鐵企業目前亟待解決的關鍵技術。針對企業需求,提出基于軟超球體算法的產品質量異常在線識別和異常原因診斷方法、基于流形學習的工藝參數在線優化方法和基于多變量統計過程控制的工藝規范制定方法。通過將上述方法進行系統集成,并利用工業互聯網技術和大數據分析方法,研發了產品質量在線智能監控系統。目前該系統已在鋼鐵企業十余條生產線上推廣應用,質量在線判定的準確率達到99.2%,在線檢測時間不到0.1 s。

       

    • 圖  1  最小封閉超球體示意圖

      Figure  1.  Minimum hypersphere diagram

      圖  2  線性超橢球將異常點判為正常點

      Figure  2.  Abnormal samples misjudged as normal samples in the linear hypersphere

      圖  3  樣本點從原始空間映射到特征空間

      Figure  3.  Samples mapped from the original space into the feature space

      圖  4  圖4 流形學習示意圖

      Figure  4.  Manifold learning diagram

      圖  9  時效溫度與快冷溫度的上、下限

      Figure  9.  Up and low limits of the aging temperature and fast-cooling temperature

      圖  5  訓練集的控制限R2(a)和在線監測結果(b)

      Figure  5.  Control limit R2 (a) of the training set and online monitoring result (b)

      圖  6  工藝參數(參數序號在表1中)的貢獻圖.(a)第25樣本;(b)第57樣本

      Figure  6.  Contribution chart of parameters: (a) sample No. 25; (b) sample No. 57 (serial numbers of the parameters are listed in Table 1)

      圖  7  工藝參數與屈服強度的主流形。(a)碳含量流形;(b)錳含量流形;(c)精軋入口溫度流形;(d)均熱溫度流形

      Figure  7.  Main manifold between the process parameters and yield strength: (a) manifold of C; (b) manifold of Mn; (c) manifold of the entry temperature of finish rolling; (d) manifold of the soaking temperature

      圖  8  熱處理工序的工藝參數上、下限.(a)均熱溫度與快冷溫度;(b)均熱溫設與時效溫度;(c)均熱溫度與緩冷溫度;(d)時效溫度與緩冷溫度

      Figure  8.  Up and low limits of the process parameters in the heat treatment: (a) soaking and fast-cooling temperature; (b) soaking and aging temperature; (c) soaking and slow-cooling temperature; (d) aging and slow-cooling temperature

      圖  10  σ取不同值時,軟超球體的邊界

      Figure  10.  Border of the soft hypersphere with different σ values

      表  1  關鍵工藝參數、質量指標及統計量

      Table  1.   Key process parameters, quality indexes, and statistics

      ParametersMaxMinMean
      Process parametersNo.1Mass fraction of C / %0.00270.00110.0017
      No.2Mass fraction of Mn / %0.1600.1000.126
      No.3Mass fraction of P / %0.0140.0070.010
      No.4Mass fraction of S / %0.01390.00240.0077
      No.5Exit temperature of heating furnace / °C1277.31247.11263.04
      No.6Entry temperature of finish rolling / °C1083.91014.01039.08
      No.7Exit temperature of finish rolling / °C928.5898.7917.17
      No.8Coiling temperature / °C755.4654.5711.70
      No.9Soaking temperature / °C854.9789.7824.27
      No.10Fast-cooling exit temperature / °C455.7378.8431.13
      No.11Aging exit temperature / °C394.1345.1374.52
      No.12Slow-cooling exit temperature / °C676.4606.0641.61
      Quality indexesNo.1Tensile strength / MPa308.0276.0290.1
      No.2Yield strength / MPa125.0160.0139.4
      No.3Elongation / %40.550.545.1
      No.4Plastic strain ratio2.103.52.85
      下載: 導出CSV

      表  2  屈服強度的質量設計

      Table  2.   Quality design of the yield strength

      Process parameterMass fraction
      of C / %
      Mass fraction
      of Mn / %
      Mass fraction
      of P / %
      Mass fraction
      of S / %
      Exit temperature of heating furnace /
      °C
      Entry temperature of finish rolling /
      °C
      Exit temperature of finish rolling /
      °C
      Coiling temperature /
      °C
      Soaking temperature /
      °C
      Fast-cooling exit temperature /
      °C
      Aging exit temperature /
      °C
      Slow-cooling exit temperature /
      °C
      Yield strength130 MPa0.0015–0.001850.105–0.1250.008–0.0120.006–0.00951261–12671030–1040914–920725–740827–843420–450375–390625–645
      140 MPa0.0016–0.00190.125–0.1350.008–0.0120.006–0.00951259–12661030–1040914–920725–740817–835420–450370–385630–650
      150 MPa0.0016–0.0020.135–0.1550.008–0.0120.006–0.00951257–12651040–1050914–920650–660810–827420–450365–380635–655
      160 MPa0.0016–0.00210.155–0.1700.008–0.0120.006–0.00951256–12641040–1050914–920650–660806–826420–450360–375640–660
      下載: 導出CSV

      表  3  第25號樣本點的工藝參數調整值

      Table  3.   Adjustment of process parameters for sample No. 25

      Process parameterExit temperature of heating furnace / °CEntry temperature of finish rolling / °CExit temperature of finish rolling / °CCoiling temperature / °CSoaking temperature / °CFast-cooling exit temperature / °CAging exit temperature / °CSlow-cooling exit temperature / °C
      Original value1247.51036.9917.2740840.1445.1389.4664.3
      Adjustment11.26.33.3?36.0?12.4?6.3?5.3?19.7
      Real value1258.71043.2920.5704827.7438.8384.1644.6
      下載: 導出CSV

      表  4  熱處理工藝參數的相關系數

      Table  4.   Correlation coefficient of the process parameters in the heat treatment

      Correlation coefficientSoaking temperatureFast-cooling temperatureAging temperatureSlow-cooling temperature
      Soaking temperature1.00.120.100.10
      Fast-cooling temperature1.00.720.61
      Aging temperature1.00.43
      Slow-cooling temperature1.0
      下載: 導出CSV

      表  5  工藝參數的預設值

      Table  5.   Preinstalling values of process parameters

      Process parameterMass fraction of C / %Mass fraction of Mn / %Mass fraction of P / %Mass fraction of S / %Exit temperature of heating furnace / °CEntry temperature of finish rolling / °CExit temperature of finish rolling / °CCoiling temperature / °CSoaking temperature / °CFast-cooling exit temperature / °CAging exit temperature / °CSlow-cooling exit temperature / °C
      Soft hypersphere0.0024–
      0.0018
      0.150–
      0.100
      0.0115–
      0.0065
      0.0118–
      0.0048
      1273–12551055–1030908–924740–685839–814451–398392–357662–620
      Max–min0.0027–
      0.0011
      0.160–
      0.10
      0.014–
      0.007
      0.0139–
      0.0024
      1277–12471084–1014928–899755–654855–790456–379394–345674–606
      6σ0.0026–
      0.0008
      0.1759–
      0.0799
      0.0156–
      0.0048
      0.0133–
      0.0025
      1280–12461067–1013926–907834–582857–793489–376407–345675–609
      下載: 導出CSV
      中文字幕在线观看
    • [1] Communication Promoters Group of the Industry-Science. Recommendations for Implementing the Strategic Initiative Industrie 4.0, 2013,http://www.acatech.de/industrie4.0
      [2] China Electronics Standardization Institute. Industrial Big Data White Paper (2017 version). http://www.cesi.cn/201703/2250.html

      中國電子技術標準研究院. 工業大數據白皮書(2017版). http://www.cesi.cn/201703/2250.html
      [3] China Electronics Standardization Institute. Cyber-physical System White Paper (2017 version). http://www.cesi.cn/201703/2251.html

      中國電子技術標準研究院. 信息物理系統白皮書(2017版). http://www.cesi.cn/201703/2251.html
      [4] Gehrmann C, Gunnarsson M. A digital twin based industrial automation and control system security architecture. IEEE Trans Ind Inform, 2020, 16(1): 669 doi: 10.1109/TII.2019.2938885
      [5] Tao F, Cheng J F, Qi Q L. IIHub: an industrial Internet-of-things hub toward smart manufacturing based on cyber-physical system. IEEE Trans Ind Inform, 2018, 14(5): 2271 doi: 10.1109/TII.2017.2759178
      [6] Morgan D, Jacobs R. Opportunities and challenges for machine learning in materials science. Annu Rev Mater Res, 2020, 50(1): 71 doi: 10.1146/annurev-matsci-070218-010015
      [7] Pablo J J, Jackson N E, Webb M A, et al. New frontiers for the materials genome initiative. Npj Comput Mater, 2019, 5(1): 1 doi: 10.1038/s41524-018-0138-z
      [8] Kim K, Ward L, He J G, et al. Machine-learning-accelerated high-throughput materials screening: Discovery of novel quaternary Heusler compounds. Phys Rev Materials, 2018, 2(12): 123801 doi: 10.1103/PhysRevMaterials.2.123801
      [9] Boyd P G, Lee Y, Smit B. Computational development of the nanoporous materials genome. Nat Rev Mater, 2017, 2: 17037 doi: 10.1038/natrevmats.2017.37
      [10] Arróyave R, McDowell D L. Systems approaches to materials design: Past, present, and future. Annu Rev Mater Res, 2019, 49(1): 103 doi: 10.1146/annurev-matsci-070218-125955
      [11] Zunger A. Inverse design in search of materials with target functionalities. Nat Rev Chem, 2018, 2: 121 doi: 10.1038/s41570-018-0121
      [12] Sanchez-Lengeling B, Aspuru-Guzik A. Inverse molecular design using machine learning: Generative models for matter engineering. Science, 2018, 361(6400): 360 doi: 10.1126/science.aat2663
      [13] Noé F, Tkatchenko A, Müller K R, et al. Machine learning for molecular simulation. Annu Rev Phys Chem, 2020, 71(1): 361 doi: 10.1146/annurev-physchem-042018-052331
      [14] Wu S, Kondo Y, Kakimoto M A, et al. Machine-learning-assisted discovery of polymers with high thermal conductivity using a molecular design algorithm. Npj Comput Mater, 2019, 5: 66 doi: 10.1038/s41524-019-0203-2
      [15] Butler K T, Davies D W, Cartwright H, et al. Machine learning for molecular and materials science. Nature, 2018, 559(7715): 547 doi: 10.1038/s41586-018-0337-2
      [16] Gomberg J A, Medford A J, Kalidindi S R. Extracting knowledge from molecular mechanics simulations of grain boundaries using machine learning. Acta Mater, 2017, 133: 100 doi: 10.1016/j.actamat.2017.05.009
      [17] Bartók A P, De S, Poelking C, et al. Machine learning unifies the modeling of materials and molecules. Sci Adv, 2017, 3(12): e1701816 doi: 10.1126/sciadv.1701816
      [18] Kourti T. Multivariate analysis for process understanding, monitoring, control, and optimization of lyophilization processes // Quality by Design for Biopharmaceutical Drug Product Development. New York, 2015: 537
      [19] Huang J, Kaul G, Cai C S, et al. Quality by design case study: An integrated multivariate approach to drug product and process development. Int J Pharm, 2009, 382(1-2): 23 doi: 10.1016/j.ijpharm.2009.07.031
      [20] Cui Y, Song X L, Chuang K, et al. Variable selection in multivariate modeling of drug product formula and manufacturing process. J Pharm Sci, 2012, 101(12): 4597 doi: 10.1002/jps.23322
      [21] Kabzan J, Hewing L, Liniger A, et al. Learning-based model predictive control for autonomous racing. IEEE Robotics Autom Lett, 2019, 4(4): 3363 doi: 10.1109/LRA.2019.2926677
      [22] Xu G, Li M, Xu J W. Application research of on-line quality control method to metallurgical products // 2019 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM). Macao, 2019: 390
      [23] Hertneck M, K?hler J, Trimpe S, et al. Learning an approximate model predictive controller with guarantees. IEEE Control Syst Lett, 2018, 2(3): 543 doi: 10.1109/LCSYS.2018.2843682
      [24] Mesbah A. Stochastic model predictive control: An overview and perspectives for future research. IEEE Control Syst Mag, 2016, 36(6): 30 doi: 10.1109/MCS.2016.2602087
      [25] Balta E C, Lin Y K, Barton K, et al. Production as a service: A digital manufacturing framework for optimizing utilization. IEEE Trans Autom Sci Eng, 2018, 15(4): 1483 doi: 10.1109/TASE.2018.2842690
      [26] DeSmit Z, Elhabashy A E, Wells L J, et al. An approach to cyber-physical vulnerability assessment for intelligent manufacturing systems. J Manuf Syst, 2017, 43: 339 doi: 10.1016/j.jmsy.2017.03.004
      [27] Michniewicz J, Reinhart G. Cyber-physical-robotics-modelling of modular robot cells for automated planning and execution of assembly tasks. Mechatronics, 2016, 34: 170 doi: 10.1016/j.mechatronics.2015.04.012
      [28] Pirvu B C, Zamfirescu C B, Gorecky D. Engineering insights from an anthropocentric cyber-physical system: A case study for an assembly station. Mechatronics, 2016, 34: 147 doi: 10.1016/j.mechatronics.2015.08.010
      [29] Jiang P Y, Ding K, Leng J W. Towards a cyber-physical-social-connected and service-oriented manufacturing paradigm: Social Manufacturing. Manuf Lett, 2016, 7: 15 doi: 10.1016/j.mfglet.2015.12.002
      [30] Zawadzki P, ?ywicki K. Smart product design and production control for effective mass customization in the industry 4.0 concept. Manag Prod Eng Rev, 2016, 7(3): 105
      [31] Yao X F, Lin Y Z. Emerging manufacturing paradigm shifts for the incoming industrial revolution. Int J Adv Manuf Technol, 2016, 85(5-8): 1665 doi: 10.1007/s00170-015-8076-0
      [32] Xu G. Application Research of CPS in On-Line Quality Control to Metallurgical Products [Dissertation]. Beijing: University of Science and Technology Beijing, 2019

      徐鋼. CPS在冶金產品質量在線管控中應用研究[學位論文]. 北京: 北京科技大學, 2019
      [33] Xu J W. Quality Control Theory and Method of Metallurgical Production Process. Beijing: Metallurgical Industry Press, 2015

      徐金梧. 冶金生產過程質量監控理論與方法. 北京: 冶金工業出版社, 2015
      [34] Jolliffe I T, Cadima J. Principal component analysis: A review and recent developments. Phil Trans R Soc A, 2016, 374(2065): 20150202 doi: 10.1098/rsta.2015.0202
      [35] Tabora J E, Domagalski N. Multivariate analysis and statistics in pharmaceutical process research and development. Annu Rev Chem Biomol Eng, 2017, 8: 403 doi: 10.1146/annurev-chembioeng-060816-101418
      [36] Johnson R A, Wichern D W. Applied Multivariate Statistical Analysis, 5th edition. Prentice Hall, 2002
      [37] Tax D M J, Duin R P W. Support vector data description. Mach Learn, 2004, 54(1): 45 doi: 10.1023/B:MACH.0000008084.60811.49
      [38] Zimek A, Schubert E, Kriegel H P. A survey on unsupervised outlier detection in high-dimensional numerical data. Stat Anal Data Min:ASA Data Sci J, 2012, 5(5): 363 doi: 10.1002/sam.11161
      [39] Gang X. Online monitoring and control method of product quality based on embedded cyber-physical system models. J Mech Eng, 2017, 53(12): 94 doi: 10.3901/JME.2017.12.094
      [40] Shawe-Taylor J, Cristianini N. Kernel Methods for Pattern Analysis. Cambridge: Cambridge University Press, 2004
      [41] Volpi M, Tuia D, Camps-Valls G, et al. Unsupervised change detection with kernels. IEEE Geosci Remote Sens Lett, 2012, 9(6): 1026 doi: 10.1109/LGRS.2012.2189092
      [42] Li M, Xu J W, Yang J H, et al. Multiple manifolds analysis and its application to fault diagnosis. Mech Syst Signal Process, 2009, 23(8): 2500 doi: 10.1016/j.ymssp.2009.05.001
      [43] Belkin M, Niyogi P, Sindhwani V. Manifold regularization: A geometric framework for learning from labeled and unlabeled examples. J Mach Learn Res, 2006, 7: 2399
      [44] Zhang Z, Zha H. Principal manifolds and nonlinear dimensionality reduction via tangent space alignment. SIAM J Sci Comput, 2004, 26(1): 313 doi: 10.1137/S1064827502419154
      [45] Saul L K, Roweis S T. Think globally, fit locally: unsupervised learning of low dimensional manifolds. J Mach Learn Res, 2003, 4: 119
    • 加載中
    圖(10) / 表(5)
    計量
    • 文章訪問數:  1084
    • HTML全文瀏覽量:  441
    • PDF下載量:  78
    • 被引次數: 0
    出版歷程
    • 收稿日期:  2021-06-22
    • 網絡出版日期:  2021-10-15
    • 刊出日期:  2022-04-02

    目錄

      /

      返回文章
      返回