• 《工程索引》(EI)刊源期刊
    • 中文核心期刊
    • 中國科技論文統計源期刊
    • 中國科學引文數據庫來源期刊

    留言板

    尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

    姓名
    郵箱
    手機號碼
    標題
    留言內容
    驗證碼

    基于Udwadia?Kalaba理論的自行車機器人平衡控制方法

    張佳樂 趙睿英 馮艷麗 楊皓 武琳琳

    張佳樂, 趙睿英, 馮艷麗, 楊皓, 武琳琳. 基于Udwadia?Kalaba理論的自行車機器人平衡控制方法[J]. 工程科學學報, 2023, 45(2): 318-325. doi: 10.13374/j.issn2095-9389.2021.08.27.007
    引用本文: 張佳樂, 趙睿英, 馮艷麗, 楊皓, 武琳琳. 基于Udwadia?Kalaba理論的自行車機器人平衡控制方法[J]. 工程科學學報, 2023, 45(2): 318-325. doi: 10.13374/j.issn2095-9389.2021.08.27.007
    ZHANG Jia-le, ZHAO Rui-ying, FENG Yan-li, YANG Hao, WU Lin-lin. A balance control method for bicycle robots based on Udwadia?Kalaba theory[J]. Chinese Journal of Engineering, 2023, 45(2): 318-325. doi: 10.13374/j.issn2095-9389.2021.08.27.007
    Citation: ZHANG Jia-le, ZHAO Rui-ying, FENG Yan-li, YANG Hao, WU Lin-lin. A balance control method for bicycle robots based on Udwadia?Kalaba theory[J]. Chinese Journal of Engineering, 2023, 45(2): 318-325. doi: 10.13374/j.issn2095-9389.2021.08.27.007

    基于Udwadia?Kalaba理論的自行車機器人平衡控制方法

    doi: 10.13374/j.issn2095-9389.2021.08.27.007
    基金項目: 長安大學研究生科研創新實踐資助項目(300103722029);陜西省重點研發計劃資助項目(2021ZDLGY09-02)
    詳細信息
      通訊作者:

      E-mail: ruiying.zhao@chd.edu.cn

    • 中圖分類號: TM911.3

    A balance control method for bicycle robots based on Udwadia?Kalaba theory

    More Information
    • 摘要: 針對自行車機器人側向自平衡問題,以一類裝有角動量輪的自行車機器人為研究對象,提出一種新的平衡控制方法。該方法根據自行車機器人靜止時刻的側向平衡條件,構造機器人平衡控制的運動學約束,并將平衡約束視為控制目標。基于Udwadia?Kalaba(U?K)理論,建立滿足機器人側向平衡的扭矩解析模型,設計基于模型的平衡約束跟隨控制器。研究結果表明,所提控制方法能夠實現自行車機器人的側向平衡,克服機器人側向橫滾角θ初始偏差的干擾,通過對平衡扭矩模型的計算,對自行車機器人進行主動平衡控制。相較于傳統PD反饋控制方法,該種基于模型設計的控制方法,具有系統響應速度快、超調量小和控制扭矩易于優化等特點。借助MATLAB軟件,對所提控制方法進行了仿真驗證,實現了初始橫滾角速度分別為0、1、2、5°·s?1條件下的自行車機器人側向自平衡控制,仿真結果驗證了控制系統的穩定性和有效性,為無人駕駛自行車機器人的平衡控制領域提供了一個新的思路。

       

    • 圖  1  自行車機器人結構簡圖

      Figure  1.  Simplified structure diagram of bicycle robot

      圖  2  自平衡控制器設計流程圖

      Figure  2.  Flow chart of controller design

      圖  3  橫滾角曲線圖

      Figure  3.  Angle graph

      圖  4  扭矩曲線圖

      Figure  4.  Torque graph

      圖  5  誤差曲線圖

      Figure  5.  Error graph

      圖  6  扭矩角度誤差曲線圖

      Figure  6.  Torque and angle error graph

      圖  7  橫滾角度曲線圖

      Figure  7.  Angle curves

      圖  8  橫滾角速度曲線圖

      Figure  8.  Angular velocity curves

      圖  9  角動量輪角速度曲線圖

      Figure  9.  Angular momentum wheel angular velocity curves

      圖  10  扭矩曲線圖

      Figure  10.  Torque graph

      圖  11  PD控制器simulink框架圖

      Figure  11.  Simiulink frame diagram of PD controller

      圖  12  PD控制器和約束跟隨控制器對比曲線圖

      Figure  12.  Comparison of PD controller and constraint following controller

      表  1  自行車機器人參數表

      Table  1.   Bicycle robot parameters

      ParameterValueParameterValue
      m1/kg11I2/(kg·m2)0.007882
      m2/kg3.5L1/m0.2316
      I1/(kg·m2)0.12418L2/m0.15
      g/(m·s-2)9.8K13
      K24HP4
      L0/m0HD3
      h0
      下載: 導出CSV
      中文字幕在线观看
    • [1] Wang H. Research on Balance Control Method of the Bicycle Robot [Dissertation]. Xi’an: Shaanxi University of Science and Technology, 2019

      王涵. 自行車機器人平衡控制方法研究[學位論文]. 陜西: 陜西科技大學, 2019
      [2] Bai G X, Meng Y, Liu L, et al. Current status of path tracking control of unmanned driving vehicles. Chin J Eng, 2021, 43(4): 475

      白國星, 孟宇, 劉立, 等. 無人駕駛車輛路徑跟蹤控制研究現狀. 工程科學學報, 2021, 43(4):475
      [3] Hou S. The Study and Control of Unmanned Bicycle Based on Variable Universe Fuzzy Controller [Dissertation]. Dalian: Dalian University of Technology, 2020

      侯帥. 基于變論域模糊控制的無人自行車控制研究[學位論文]. 大連: 大連理工大學, 2020
      [4] Tanaka Y, Murakami T. Self sustaining bicycle robot with steering controller // The 8th IEEE International Workshop on Advanced Motion Control. Kawasaki, 2004: 193
      [5] Lee S, Ham W. Self stabilizing strategy in tracking control of unmanned electric bicycle with mass balance // IEEE/RSJ International Conference on Intelligent Robots and Systems. Lausanne, 2002: 2200
      [6] Schwab A L, Meijaard J P. A review on bicycle dynamics and rider control. Veh Syst Dyn, 2013, 51(7): 1059 doi: 10.1080/00423114.2013.793365
      [7] Vu N K, Nguyen H Q. Balancing control of two-wheel bicycle problems. Math Probl Eng, 2020, 2020: 6724382
      [8] Lam P Y. Gyroscopic stabilization of a kid-size bicycle // 2011 IEEE 5th International Conference on Cybernetics and Intelligent Systems. Qingdao, 2011: 247
      [9] Lee S I, Lee I W, Kim M S, et al. Balancing and driving control of a bicycle robot. J Inst Control Robotics Syst, 2012, 18(6): 532 doi: 10.5302/J.ICROS.2012.18.6.532
      [10] Chen C K, Chu T D, Zhang X D. Modeling and control of an active stabilizing assistant system for a bicycle. Sensors, 2019, 19(2): 248 doi: 10.3390/s19020248
      [11] Spry S C, Girard A R. Gyroscopic stabilisation of unstable vehicles: Configurations, dynamics, and control. Veh Syst Dyn, 2008, 46(Suppl 1): 247
      [12] Cui L L, Wang S, Lai J, et al. Nonlinear balance control of an unmanned bicycle: Design and experiments // 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Las Vegas, 2021: 7279
      [13] Zhang Y Z, Wang P C, Yi J G, et al. Stationary balance control of a bikebot // 2014 IEEE International Conference on Robotics and Automation. Hong Kong, 2014: 6706
      [14] Beznos A V, Formal’sky A M, Gurfinkel E V, et al. Control of autonomous motion of two-wheel bicycle with gyroscopic stabilization // Proceedings of the I998 IEEE International Conference on Robotics and Automatlon. Leuven, 1998: 2670
      [15] Chen C K, Dao T K. Speed-adaptive roll-angle-tracking control of an unmanned bicycle using fuzzy logic. Veh Syst Dyn, 2010, 48(1): 133 doi: 10.1080/00423110903085872
      [16] Zhang X R, Chen Y, Ping Z Q. Mechanical manipulator tracking control based on Udwadia and Kalaba equation. J Chang'an Univ Nat Sci Ed, 2014, 34(1): 115 doi: 10.19721/j.cnki.1671-8879.2014.01.019

      張新榮, Chen Yehwa, 平昭琪. 基于Udwadia和Kalaba方程的機械臂軌跡跟蹤控制. 長安大學學報(自然科學版), 2014, 34(1):115 doi: 10.19721/j.cnki.1671-8879.2014.01.019
      [17] Udwadia F E, Kalaba R E. Analytical Dynamics: a New Approach. Cambridge: Cambridge University Press, 1996
      [18] Chen Y H. Constraint-following servo control design for mechanical systems. J Vib Control, 2009, 15(3): 369 doi: 10.1177/1077546307086895
      [19] Zhao H, Zhao F M, Huang K, et al. Position control of mechanical manipulator based on Udwadia-Kalaba theory. J Hefei Univ Technol Nat Sci, 2018, 41(4): 433

      趙韓, 趙福民, 黃康, 等. 基于Udwadia-Kalaba理論的機械臂位置控制. 合肥工業大學學報(自然科學版), 2018, 41(4):433
      [20] Zhao R Y, Wu L L, Chen Y H. Robust control for nonlinear delta parallel robot with uncertainty: An online estimation approach. IEEE Access, 2020, 8: 97604 doi: 10.1109/ACCESS.2020.2997093
      [21] Chen X L, Sun H, Zhen S C. A novel adaptive robust control approach for underactuated mobile robot // 2018 3rd International Conference on Advanced Robotics and Mechatronics (ICARM). Singapore, 2018: 642
      [22] Han J, Wang P, Dong F F, et al. Robust servo constrained control of parallel robots based on the udwadia-kalaba method. Appl Math Mech, 2021, 42(3): 264

      韓江, 汪鵬, 董方方, 等. 基于Udwadia-Kalaba方法的并聯機器人魯棒伺服約束控制. 應用數學和力學, 2021, 42(3):264
      [23] Yin H, Chen Y H, Yu D J. Vehicle motion control under equality and inequality constraints: A diffeomorphism approach. Nonlinear Dyn, 2019, 95(1): 175 doi: 10.1007/s11071-018-4558-6
      [24] Dong F F, Zhao X M. Underactuated Flexible Mechanical Arm System Based on Constraint Force Robust Servo Control: China Patent, 201810739283X. 2018-12-7

      董方方, 趙曉敏. 一種基于約束力魯棒伺服控制的欠驅動柔性機械臂系統: 中國專利, 201810739283X. 2018-12-7
      [25] Bellman R. Introduction to Matrix Analysis. New York: McGraw-Hill, 1970
      [26] Zhao R Y. Research on Extended Cascading Modeling and the Constraint-Following Control of Multi-Body Systems [Dissertation]. Xi'an: Chang'an University, 2015

      趙睿英. 多剛體系統擴展層級建模與約束跟隨控制方法研究[學位論文]. 西安: 長安大學, 2015
      [27] Zhang T, Qin B B, Zou Y B. Identification methods for robot payload dynamical parameters. Chin J Eng, 2017, 39(12): 1907

      張鐵, 覃彬彬, 鄒焱飚. 機器人負載的動力學參數辨識. 工程科學學報, 2017, 39(12):1907
      [28] Udwadia F E. A new perspective on the tracking control of nonlinear structural and mechanical systems. Proc R Soc Lond A, 2003, 459(2035): 1783 doi: 10.1098/rspa.2002.1062
      [29] Yu R R, Chen Y H, Zhao H, et al. Uniform ultimate boundedness for underactuated mechanical systems as mismatched uncertainty disappeared. Nonlinear Dyn, 2019, 95(4): 2765 doi: 10.1007/s11071-018-4721-0
      [30] Wang S, Cui L L, Lai J, et al. Gain scheduled controller design for balancing an autonomous bicycle // 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Las Vegas, 2020: 7595
      [31] Cui X D, Deng S F, Wang P J. Position domain control technology for six-joint robots. Chin J Eng, 2022, 44(2): 244

      崔旭東, 鄧少豐, 王平江. 面向六關節機器人的位置域控制. 工程科學學報, 2022, 44(2):244
    • 加載中
    圖(12) / 表(1)
    計量
    • 文章訪問數:  930
    • HTML全文瀏覽量:  281
    • PDF下載量:  128
    • 被引次數: 0
    出版歷程
    • 收稿日期:  2021-08-27
    • 網絡出版日期:  2021-10-19
    • 刊出日期:  2023-02-01

    目錄

      /

      返回文章
      返回