• 《工程索引》(EI)刊源期刊
    • 中文核心期刊
    • 中國科技論文統計源期刊
    • 中國科學引文數據庫來源期刊

    留言板

    尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

    姓名
    郵箱
    手機號碼
    標題
    留言內容
    驗證碼

    長水口吹氬生成微小氣泡工業實驗研究

    劉建華 李巍 何楊 蘇曉峰 張杰 常芙蓉

    劉建華, 李巍, 何楊, 蘇曉峰, 張杰, 常芙蓉. 長水口吹氬生成微小氣泡工業實驗研究[J]. 工程科學學報, 2022, 44(7): 1183-1191. doi: 10.13374/j.issn2095-9389.2021.09.15.009
    引用本文: 劉建華, 李巍, 何楊, 蘇曉峰, 張杰, 常芙蓉. 長水口吹氬生成微小氣泡工業實驗研究[J]. 工程科學學報, 2022, 44(7): 1183-1191. doi: 10.13374/j.issn2095-9389.2021.09.15.009
    LIU Jian-hua, LI Wei, HE Yang, SU Xiao-feng, ZHANG Jie, CHANG Fu-rong. Industrial experimental study on the formation of microbubbles by argon injection into ladle shroud[J]. Chinese Journal of Engineering, 2022, 44(7): 1183-1191. doi: 10.13374/j.issn2095-9389.2021.09.15.009
    Citation: LIU Jian-hua, LI Wei, HE Yang, SU Xiao-feng, ZHANG Jie, CHANG Fu-rong. Industrial experimental study on the formation of microbubbles by argon injection into ladle shroud[J]. Chinese Journal of Engineering, 2022, 44(7): 1183-1191. doi: 10.13374/j.issn2095-9389.2021.09.15.009

    長水口吹氬生成微小氣泡工業實驗研究

    doi: 10.13374/j.issn2095-9389.2021.09.15.009
    基金項目: 國家自然科學基金資助項目(51874028)
    詳細信息
      通訊作者:

      E-mail: heyang2020@ustb.edu.cn

    • 中圖分類號: TF769.4

    Industrial experimental study on the formation of microbubbles by argon injection into ladle shroud

    More Information
    • 摘要: 在連鑄生產中采用大流量長水口吹氬,并采用“冷鋼片沾鋼法”沾取中間包鋼液試樣,成功沾取了中間包鋼液中微小氬氣泡。冷鋼片沾樣表面氣泡為中間包上部鋼/渣界面和爐渣中氬氣泡,尺寸主要位于1.0~3.0 mm,但該尺寸不能反映中間包鋼液內部長水口吹氬生成氣泡,冷鋼片沾樣內部氣泡為鋼液內部長水口吹氬生成的氣泡。結合掃描電鏡和共聚焦顯微鏡對沾取試樣內部氣泡形貌、尺寸和數量進行了分析,結果表明大部分氣泡為獨立圓形氣泡,偶見少量粘連和聚合氣泡;鋼液內部氬氣泡尺寸主要位于100~1000 μm,平均尺寸為500 μm左右;氣泡在長水口出口及其下方較為彌散,氣泡數量可達15.2 cm?2。采用掃描電鏡結合能譜分析,發現部分氣泡內粘附有夾雜物,有些氣泡粘附多個夾雜物;氣泡粘附Al2O3夾雜物的幾率高于粘附CaO(?MgO)?Al2O3?SiO2復合夾雜物的幾率。

       

    • 圖  1  連鑄長水口保護澆注與吹氬保護裝置示意圖

      Figure  1.  Schematic diagram of protective casting using a ladle shroud and argon injection device

      圖  2  長水口吹氬氬氣流股流動示意圖

      Figure  2.  Schematic diagram showing argon stream flow in ladle shroud

      圖  3  冷鋼片沾鋼法示意圖

      Figure  3.  Schematic diagram of dip sampling method using a cold steel sheet

      圖  4  冷鋼片沾樣表面氣泡形貌. (a) 1-豎片; (b) 2-豎片(爆裂氣泡坑); (c) 2-橫片表(渣皮爆落)

      Figure  4.  Shape of bubbles on the surface of a cold steel sheet: (a) 1-vertical steel sheet; (b) 2-vertical steel sheet (bubble collapse cavity); (c) 2-horizontal steel sheet (slag layer falls off)

      圖  5  冷鋼片沾取試樣表面氣泡尺寸分布圖

      Figure  5.  Bubble size distribution on the surface of a cold steel sheet

      圖  6  冷鋼片沾樣內部氣泡形貌. (a) 第1爐次; (b) 第2爐次

      Figure  6.  Shape of bubbles in a cold steel sheet: (a) the first test and (b) the second test

      圖  7  冷鋼片沾取試樣內部氣泡尺寸分布

      Figure  7.  Bubble size distribution in a cold steel sheet

      圖  8  冷鋼片沾取試樣中單個球形氣泡形貌及直徑尺寸

      Figure  8.  Shape and size of single spherical bubble in a cold steel sheet

      圖  9  冷鋼片沾取試樣中粘連與聚合氣泡形貌及尺寸

      Figure  9.  Shape and size of adhesive and polymeric bubbles in a cold steel sheet

      圖  10  冷鋼片沾樣內部氣泡尺寸分布掃描電鏡分析結果

      Figure  10.  Bubble size distribution in a cold steel sheet using SEM

      圖  11  沾鋼片表面氣泡形成示意圖

      Figure  11.  Diagram of bubble formation on the surface of a steel sheet

      圖  12  渣層覆蓋的氣泡表面受力示意圖

      Figure  12.  Diagram of forces on the bubble surface covered with a slag layer   

      圖  13  氣泡檢測直徑與實際直徑關系示意圖

      Figure  13.  Diagram of the relationship between DMea and DRea

      圖  14  氣泡粘附夾雜物和夾雜物成分能譜分析結果. (a)粘附Al2O3夾雜; (b)粘附CaO?Al2O3?SiO2復合夾雜

      Figure  14.  Bubbles adhere to inclusions and inclusion composition: (a) Al2O3; (b) CaO?Al2O3?SiO2

      表  1  冷鋼片沾取試樣表面氣泡數量及平均尺寸

      Table  1.   Number and average size of bubbles on the surface of a cold steel sheet

      Number of
      steel sheet
      0–1.0 mm1.0–3.0 mm3.0–5.0 mm5.0–10.0 mmTotalAverage size/mm
      1-vertical
      steel sheet
      037194603.12
      2-vertical
      steel sheet
      0481013713.02
      2-horizontal
      steel sheet
      02850332.13
      下載: 導出CSV
      中文字幕在线观看
    • [1] Liu J H, Zhang J, Li K W. Current state and prospect of technologies for removing inclusion by bubbles. Steelmaking, 2017, 33(2): 1

      劉建華, 張杰, 李康偉. 氣泡去除夾雜物技術研究現狀及發展趨勢. 煉鋼, 2017, 33(2):1
      [2] Liu W J, Lee J, Guo X P, et al. Argon bubble coalescence and breakup in a steel ladle with bottom plugs. Steel Res Int, 2019, 90(4): 1800396 doi: 10.1002/srin.201800396
      [3] Sutherland K L. Physical chemistry of flotation. XI. kinetics of the flotation process. J Phys Chem, 1948, 52(2): 394
      [4] Zhang L, Taniguchi S. Fundamentals of inclusion removal from liquid steel by bubble flotation. Int Mater Rev, 2000, 45(2): 59 doi: 10.1179/095066000101528313
      [5] Rogler J P, Heaslip L J, Mehrvar M. Physical modelling of inclusion removal in a tundish by gas bubbling. Can Metall Q, 2005, 44(3): 357 doi: 10.1179/cmq.2005.44.3.357
      [6] Xue Z L, Wang Y F, Wang L T, et al. Inclusion removal from molten steel by attachment small bubbles. Acta Met Sin, 2003, 39(4): 431 doi: 10.3321/j.issn:0412-1961.2003.04.019

      薛正良, 王義芳, 王立濤, 等. 用小氣泡從鋼液中去除夾雜物顆粒. 金屬學報, 2003, 39(4):431 doi: 10.3321/j.issn:0412-1961.2003.04.019
      [7] Zhang J, Liu J H, Yu S J, et al. Bubble growth and floating behavior during degassing process of molten steel/(N2, H2) system. ISIJ Int, 2020, 60(3): 470 doi: 10.2355/isijinternational.ISIJINT-2018-875
      [8] Chang L Z, Shi X F, Wang J J, et al. Effect of ultrasonic power on distribution of Al2O3 inclusions in ESR ingots. Chin J Process Eng, 2015, 15(1): 79

      常立忠, 施曉芳, 王建軍, 等. 超聲波功率對電渣鋼錠中氧化鋁夾雜物分布的影響. 過程工程學報, 2015, 15(1):79
      [9] Guo X L, Yu J B, Ren X F, et al. The mechanism of inclusion removal from molten steel by dissolved gas flotation. Ironmak Steelmak, 2018, 45(7): 648 doi: 10.1080/03019233.2017.1317509
      [10] Wang X F, Tang F P, Yao W Z, et al. Novel concept of fine inclusion removal using carbonate powder injection through the ladle shroud. Ironmak Steelmak, 2019, 46(9): 906 doi: 10.1080/03019233.2019.1629778
      [11] Furumai K, Murai T, Aramaki N, et al. Effect of gas flow rate, bubble size and inclusion size on inclusion removal under high throughput conditions using water model experiment. Tetsu-to-Hagane, 2017, 103(9): 517 doi: 10.2355/tetsutohagane.TETSU-2017-014
      [12] Zhang J, Liu J H, Yan B J, et al. Nonmetallic inclusion removal of Si-Mn deoxidized steel by nitrogen absorption and release method. Chin J Eng, 2018, 40(8): 937

      張杰, 劉建華, 閆柏軍, 等. 增氮析氮法去除硅錳脫氧鋼中夾雜物的研究. 工程科學學報, 2018, 40(8):937
      [13] Singh P K, Mazumdar D. A physical model study of two-phase gas–liquid flows in a ladle shroud. Metall Mater Trans B, 2018, 49(4): 1945 doi: 10.1007/s11663-018-1297-5
      [14] Zhu M M, Zhou W, Hu S B. Effect of bowing methods at long nozzle on inclusions removal. Mater Rev, 2013, 27(18): 145

      祝明妹, 周旺, 胡勝波. 中間包長水口吹氣方式對夾雜物去除效果的影響. 材料導報, 2013, 27(18):145
      [15] Fan A Y, Wen G H, Li J X, et al. Present situation and prospect of fine gas bubbles formation in the ladle shroud. Steelmaking, 2015, 31(2): 67

      樊安源, 文光華, 李敬想, 等. 鋼包長水口內小氣泡形成的研究現狀與展望. 煉鋼, 2015, 31(2):67
      [16] Guthrie R, Isac M. Towards forming micro-bubbles in liquid steel // Proceedings of the First Global Conference on Extractive Metallurgy. Ottawa, 2018: 729
      [17] Yang X F, Chang W J, Zhong L C, et al. Experiment of bubble behavior in argon blowing through long shroud of continuous casting. Steelmaking, 2018, 34(2): 12

      陽祥富, 常文杰, 鐘良才, 等. 連鑄長水口吹氬氣泡行為的試驗研究. 煉鋼, 2018, 34(2):12
      [18] Bai H, Thomas B G. Bubble formation during horizontal gas injection into downward-flowing liquid. Metall Mater Trans B, 2001, 32(6): 1143 doi: 10.1007/s11663-001-0102-y
      [19] Chang S, Cao X K, Zou Z S. Regimes of micro-bubble formation using gas injection into ladle shroud. Metall Mater Trans B, 2018, 49(3): 953 doi: 10.1007/s11663-018-1231-x
      [20] Chatterjee S, Chattopadhyay K. Physical modeling of slag ‘eye’ in an inert gas-shrouded tundish using dimensional analysis. Metall Mater Trans B, 2016, 47(1): 508 doi: 10.1007/s11663-015-0512-x
      [21] Jin K, Thomas B G, Ruan X M. Modeling and measurements of multiphase flow and bubble entrapment in steel continuous casting. Metall Mater Trans B, 2016, 47(1): 548 doi: 10.1007/s11663-015-0525-5
      [22] Cramb A W, Jimbo I. Interfacial considerations in continuous casting. Iron Steelmaker, 1989, 16(6): 43
      [23] Zhang J Y. Physical Chemistry of Metallurgy. Beijing: Metallurgical Industry Press, 2004

      張家蕓. 冶金物理化學. 北京: 冶金工業出版社, 2004
      [24] Valdez M, Shannon G S, Sridhar S. The ability of slags to absorb solid oxide inclusions. ISIJ Int, 2006, 46(3): 450 doi: 10.2355/isijinternational.46.450
      [25] Arai H, Matsumoto K, Shimasaki S I, et al. Model experiment on inclusion removal by bubble flotation accompanied by particle coagulation in turbulent flow. ISIJ Int, 2009, 49(7): 965 doi: 10.2355/isijinternational.49.965
      [26] Liu W. Model Study of Non-Metallic Inclusion Removal through Steel-Slag Interface Micro-Process [Dissertation]. Beijing: University of Science and Technology Beijing, 2020

      劉威. 鋼中非金屬夾雜物界面去除過程微觀模型研究[學位論文]. 北京: 北京科技大學, 2020
    • 加載中
    圖(14) / 表(1)
    計量
    • 文章訪問數:  852
    • HTML全文瀏覽量:  362
    • PDF下載量:  64
    • 被引次數: 0
    出版歷程
    • 收稿日期:  2021-09-15
    • 網絡出版日期:  2021-10-27
    • 刊出日期:  2022-07-01

    目錄

      /

      返回文章
      返回