• 《工程索引》(EI)刊源期刊
    • 中文核心期刊
    • 中國科技論文統計源期刊
    • 中國科學引文數據庫來源期刊

    留言板

    尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

    姓名
    郵箱
    手機號碼
    標題
    留言內容
    驗證碼

    基于固液兩相流模擬的選礦循環水深度澄清裝置優化

    胡文韜 田凱 李佳鴻 梁思懿 宋超 李杰 劉欣偉 王化軍

    胡文韜, 田凱, 李佳鴻, 梁思懿, 宋超, 李杰, 劉欣偉, 王化軍. 基于固液兩相流模擬的選礦循環水深度澄清裝置優化[J]. 工程科學學報, 2022, 44(6): 993-1001. doi: 10.13374/j.issn2095-9389.2021.10.01.003
    引用本文: 胡文韜, 田凱, 李佳鴻, 梁思懿, 宋超, 李杰, 劉欣偉, 王化軍. 基于固液兩相流模擬的選礦循環水深度澄清裝置優化[J]. 工程科學學報, 2022, 44(6): 993-1001. doi: 10.13374/j.issn2095-9389.2021.10.01.003
    HU Wen-Tao, TIAN Kai, LI Jia-hong, LIANG Si-yi, SONG Chao, LI Jie, LIU Xin-wei, WANG Hua-Jun. Optimization of depth clarification device for beneficiation circulating water based on solid-liquid two-phase flow simulation[J]. Chinese Journal of Engineering, 2022, 44(6): 993-1001. doi: 10.13374/j.issn2095-9389.2021.10.01.003
    Citation: HU Wen-Tao, TIAN Kai, LI Jia-hong, LIANG Si-yi, SONG Chao, LI Jie, LIU Xin-wei, WANG Hua-Jun. Optimization of depth clarification device for beneficiation circulating water based on solid-liquid two-phase flow simulation[J]. Chinese Journal of Engineering, 2022, 44(6): 993-1001. doi: 10.13374/j.issn2095-9389.2021.10.01.003

    基于固液兩相流模擬的選礦循環水深度澄清裝置優化

    doi: 10.13374/j.issn2095-9389.2021.10.01.003
    基金項目: 國家重點研發計劃資助項目(2020YFC1807803);礦物加工科學與技術國家重點實驗室開放基金資助項目(BGRIMM-KJSKL-2020-11);中央高校基本科研業務費資助項目(FRF-IP-20-02)
    詳細信息
      通訊作者:

      E-mail: alabozhizi@163.com

    • 中圖分類號: TD926.5

    Optimization of depth clarification device for beneficiation circulating water based on solid-liquid two-phase flow simulation

    More Information
    • 摘要: 部分選礦循環水中含一定量的高分散性懸浮顆粒,僅依靠簡單濃縮沉降難以澄清,無法達到回用要求。針對這一難題,提出了一種選礦循環水固體懸浮物澄清裝置。為優化裝置的結構參數與運行參數,建立了選礦循環水深度澄清裝置的二維物理模型,基于計算流體力學(CFD)的方法,選用Mixture和RNG k?ε 模型對裝置主要的結構參數與運行參數展開了數值模擬研究。研究發現適當降低水力循環區噴嘴長度,增加喉管與噴嘴管徑比、顆粒沉降區開口尺寸、裝置直徑等結構,能夠降低顆粒沉降區平均湍動能,由于湍動能為單位質量流體由于紊流脈動所具有的動能,故降低了顆粒沉降區流場的紊流程度,增加了水流的穩定性,提高了裝置對懸浮顆粒的去除效果;同時發現降低入口流速、增加懸浮顆粒粒徑有助于提高懸浮物的去除率,當進水流速為0.1 m·s?1、經過混凝的懸浮顆粒形成粒徑大于100 μm時,裝置對選礦循環水中的懸浮顆粒去除效果顯著。

       

    • 圖  1  固體懸浮物處理裝置結構簡圖

      Figure  1.  Structure diagram of deep clarification physicochemical reaction device

      圖  2  物理模型(a)與網格劃分(b)

      Figure  2.  Physical model (a) and meshing (b)

      圖  3  網格獨立性研究

      Figure  3.  Grid dependency study

      圖  4  不同噴嘴長度對裝置內部速度流場的影響. (a) 50 m; (b) 80 mm; (c) 110mm

      Figure  4.  Effect of nozzle length on velocity flow field inside the device: (a) 50 m; (b) 80 mm; (c) 110 mm

      圖  6  噴嘴長度對固體懸浮顆粒去除率η的影響

      Figure  6.  Effect of nozzle length on the removal rate of solid suspended particles η

      圖  5  噴嘴長度對顆粒沉降區平均湍動能的影響

      Figure  5.  Effect of nozzle length on average turbulent kinetic energy in sludge settling zone

      圖  7  管徑比對裝置內部速度流場的影響. (a) 管徑比1.5; (b) 管徑比2; (c) 管徑比3

      Figure  7.  Effect of pipe diameter ratio on velocity flow field inside the device: (a) pipe diameter ratio of 1.5; (b) pipe diameter ratio of 2; (c) pipe diameter ratio of 3

      圖  8  管徑比對顆粒沉降區平均湍動能的影響

      Figure  8.  Effect of pipe diameter ratio on average turbulent kinetic energy in sludge settling zone

      圖  9  管徑比對固體懸浮顆粒去除率的影響

      Figure  9.  Effect of pipe diameter ratio on the removal rate of solid suspended particles

      圖  10  開口尺寸對裝置內部速度流場的影響. (a) 開口尺寸50 mm; (b) 開口尺寸70 mm; (c) 開口尺寸90 mm

      Figure  10.  Effect of opening size on velocity flow field inside the device: (a) opening size of 50 mm; (b) opening size of 70 mm; (c) opening size of 90 mm

      圖  12  開口尺寸對固體懸浮顆粒去除率的影響

      Figure  12.  Effect of opening size on removal rate of suspended solids particles

      圖  11  開口尺寸對污泥沉降區平均湍動能的影響

      Figure  11.  Effect of opening size on average turbulent kinetic energy in sludge settling zone

      圖  13  裝置直徑對裝置內部速度流場的影響. (a) 直徑500 mm; (b) 直徑600 mm; (c) 直徑700 mm

      Figure  13.  Effect of device diameter on velocity distribution of flow field inside the device: (a) diameter of 500 mm; (b) diameter of 600 mm; (c) diameter of 700 mm

      圖  14  裝置直徑對污泥沉降區平均湍動能的影響

      Figure  14.  Effect of device diameter on average turbulent kinetic energy in sludge settling zone

      圖  15  裝置直徑對固體懸浮顆粒去除率的影響

      Figure  15.  Effect of device diameter on the removal rate of solid suspended particles

      表  1  裝置主要結構尺寸

      Table  1.   Main structure size of the device mm

      HDh1h2h3h4h5h6d1
      1220500155450440601909525
      d2d3LL1L2L3L4αβ
      503807080156050140o150o
      下載: 導出CSV

      表  2  裝置運行參數對固體懸浮顆粒去除率的影響

      Table  2.   Effect of operation parameters on the removal rate of suspended solids

      Inlet velocity/(m·s?1)Suspended particle size/μmη/%
      0.16025.11
      7530.26
      10060.98
      12080.36
      0.126018.3
      7524.13
      10045.96
      12070.46
      0.156017.16
      7518.41
      10026.11
      12046.18
      0.186011.54
      7515.6
      10023.6
      12029.1
      下載: 導出CSV
      中文字幕在线观看
    • [1] Chen W M, Wu S M, Lei Y L, et al. China's water footprint by Province, and inter-provincial transfer of virtual water. Ecol Indic, 2017, 74: 321 doi: 10.1016/j.ecolind.2016.11.037
      [2] Zhou S J, Deng R J, Hursthouse A. Risk assessment of potentially toxic elements pollution from mineral processing steps at xikuangshan antimony plant, Hunan, China. Processes, 2019, 8(1): 29 doi: 10.3390/pr8010029
      [3] Yang X L, Bu X N, Xie G Y, et al. A comparative study on the influence of mono, di, and trivalent cations on the chalcopyrite and pyrite flotation. J Mater Res Technol, 2021, 11: 1112 doi: 10.1016/j.jmrt.2021.01.086
      [4] Bicak O, Ozturk Y, Ozdemir E, et al. Modelling effects of dissolved ions in process water on flotation performance. Miner Eng, 2018, 128: 84 doi: 10.1016/j.mineng.2018.08.031
      [5] Castillo C, Ihle C F, Jeldres R I. Chemometric optimisation of a copper sulphide tailings flocculation process in the presence of clays. Minerals, 2019, 9(10): 582 doi: 10.3390/min9100582
      [6] Chen Y F, Fan R, An D F, et al. Water softening by induced crystallization in fluidized bed. J Environ Sci, 2016, 50: 109 doi: 10.1016/j.jes.2016.08.014
      [7] Zubkova O, Alexeev A, Polyanskiy A, et al. Complex processing of saponite waste from a diamond-mining enterprise. Appl Sci, 2021, 11(14): 6615 doi: 10.3390/app11146615
      [8] Liang G Q, Zhao Q, Liu B, et al. Treatment and reuse of process water with high suspended solids in low-grade iron ore dressing. J Clean Prod, 2021, 278: 123493 doi: 10.1016/j.jclepro.2020.123493
      [9] Xu S, Zhou X L, Liu X C, et al. Development process, classification and high efficiency modification status of the thickener. Met Mine, 2021(5): 167

      徐帥, 周興龍, 劉肖楚, 等. 濃密機發展歷程、分類及其高效化改進研究現狀. 金屬礦山, 2021(5):167
      [10] Yang B D, Xie J Y, Li P. Research on mechanism of high efficiency thickener. Nonferrous Met (Miner Process Sect), 2011(5): 38

      楊保東, 謝紀元, 李鵬. 高效濃密機機理研究. 有色金屬(選礦部分), 2011(5):38
      [11] Chen Q L, Li C J, Yang Y. Analysis on technical characteristics of ?53 m center drive automatic rake lifting high efficiency thickener. Mod Min, 2009, 25(6): 130 doi: 10.3969/j.issn.1674-6082.2009.06.048

      陳慶來, 李從軍, 楊勇. ?53 m中心傳動自動提耙高效濃縮機技術特點分析. 現代礦業, 2009, 25(6):130 doi: 10.3969/j.issn.1674-6082.2009.06.048
      [12] Xie D D, Tong X, Xie X, et al. The application and development of thickener in mineral processing technology. Conserv Util Miner Resour, 2015(2): 73

      謝丹丹, 童雄, 謝賢, 等. 濃密機在選礦中的應用現狀及研究進展. 礦產保護與利用, 2015(2):73
      [13] Xu Y R, Ban X J, Wang X K, et al. Simulations of silicone oil filling for use in retinal detachment surgery. Chin J Eng, 2021, 43(9): 1233

      徐衍睿, 班曉娟, 王笑琨, 等. 面向視網膜脫離手術的硅油填充模擬. 工程科學學報, 2021, 43(9):1233
      [14] Cui Y, Ravnik J, Steinmann P, et al. Settling characteristics of nonspherical porous sludge flocs with nonhomogeneous mass distribution. Water Res, 2019, 158: 159 doi: 10.1016/j.watres.2019.04.017
      [15] Gao H W, Stenstrom M K. Development and applications in computational fluid dynamics modeling for secondary settling tanks over the last three decades: A review. Water Environ Res, 2020, 92(6): 796 doi: 10.1002/wer.1279
      [16] Shah M T, Parmar H B, Rhyne L D, et al. A novel settling tank for produced water treatment: CFD simulations and PIV experiments. J Petroleum Sci Eng, 2019, 182: 106352 doi: 10.1016/j.petrol.2019.106352
      [17] Yao J J, Song L L, Liu C. Numerical simulation and structural optimization of water distribution channel between the flocculation tank and sedimentation tank with inclined plate settler. J Water Resour Water Eng, 2020, 31(5): 120

      姚娟娟, 宋莉莉, 劉存. 斜板沉淀池前配水渠的數值模擬及結構優化. 水資源與水工程學報, 2020, 31(5):120
      [18] Wei W L, Hu J J, Wang C Z, et al. Numerical simulation for the influence of outlet location on the hydraulic characteristic in a radical settling tank. Chin J Appl Mech, 2021, 38(2): 670

      魏文禮, 胡嘉冀, 王長洲, 等. 輻流式沉淀池出口位置優化數值模擬研究. 應用力學學報, 2021, 38(2):670
      [19] Lan B, Xu J, Liu Z C, et al. Simulation of scale-up effect of particle residence time distribution characteristics in continuously operated dense-phase fluidized beds. Ciesc J, 2021, 72(1): 521

      蘭斌, 徐驥, 劉志成, 等. 連續操作密相流化床顆粒停留時間分布特性模擬放大研究. 化工學報, 2021, 72(1):521
      [20] Liu Y L, Zhang P, Wei W L, et al. Numerical simulation of mechanical property of solid-liquid two-phase turbulent flow in a secondary sedimentation tank of radial flow. J Water Resour Water Eng, 2013, 24(4): 25

      劉玉玲, 張沛, 魏文禮, 等. 輻流式沉淀池液固兩相流力學特性三維數值模擬. 水資源與水工程學報, 2013, 24(4):25
      [21] Yu Q H, Mei Z Y, Bai M Q, et al. Cooling performance improvement of impingement hybrid synthetic jets in a confined space with the aid of a fluid diode. Appl Therm Eng, 2019, 157: 113749 doi: 10.1016/j.applthermaleng.2019.113749
      [22] Behrangi F, Banihashemi M A, Namin M M, et al. A new approach to solve mixture multi-phase flow model using time splitting projection method. Prog Comput Fluid Dyn Int J, 2019, 19(3): 160 doi: 10.1504/PCFD.2019.099595
      [23] Hnaien N, Marzouk S, Aissia H B, et al. Numerical investigation of velocity ratio effect in combined wall and offset jet flows. J Hydrodyn, 2018, 30(6): 1105 doi: 10.1007/s42241-018-0136-0
      [24] Siswantara A I, Budiarso, Darmawan S. Investigation of inverse-turbulent-Prandtl number with four RNG k?ε turbulence models on compressor discharge pipe of bioenergy micro gas turbine. Appl Mech Mater, 2016, 819: 392 doi: 10.4028/www.scientific.net/AMM.819.392
      [25] Tarpagkou R, Pantokratoras A. The influence of lamellar settler in sedimentation tanks for potable water treatment—A computational fluid dynamic study. Powder Technol, 2014, 268: 139 doi: 10.1016/j.powtec.2014.08.030
      [26] Tan L X, Tang M, Xu C H. Three-dimensional numerical simulations of the effects of slanting plates in vertical flow desilting tank. J Hydroelectr Eng, 2018, 37(10): 86 doi: 10.11660/slfdxb.20181010

      譚立新, 唐敏, 徐長賀. 斜板對豎流式沉淀池影響的三維數值模擬. 水力發電學報, 2018, 37(10):86 doi: 10.11660/slfdxb.20181010
      [27] Shahrokhi M, Rostami F, Md Said M A, et al. The effect of number of baffles on the improvement efficiency of primary sedimentation tanks. Appl Math Model, 2012, 36(8): 3725 doi: 10.1016/j.apm.2011.11.001
      [28] Goula A M, Kostoglou M, Karapantsios T D, et al. A CFD methodology for the design of sedimentation tanks in potable water treatment: Case study: The influence of a feed flow control baffle. Chem Eng J, 2008, 140(1-3): 110 doi: 10.1016/j.cej.2007.09.022
    • 加載中
    圖(15) / 表(2)
    計量
    • 文章訪問數:  540
    • HTML全文瀏覽量:  204
    • PDF下載量:  39
    • 被引次數: 0
    出版歷程
    • 收稿日期:  2021-10-01
    • 網絡出版日期:  2022-01-20
    • 刊出日期:  2022-06-25

    目錄

      /

      返回文章
      返回