• 《工程索引》(EI)刊源期刊
    • 中文核心期刊
    • 中國科技論文統計源期刊
    • 中國科學引文數據庫來源期刊

    留言板

    尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

    姓名
    郵箱
    手機號碼
    標題
    留言內容
    驗證碼

    面向鋼鐵燒結煙氣NOx吸附凈化的吸附劑特性

    劉應書 吳曉永 李子宜 楊雄 劉文海 侯環宇 邢奕 李金娟

    劉應書, 吳曉永, 李子宜, 楊雄, 劉文海, 侯環宇, 邢奕, 李金娟. 面向鋼鐵燒結煙氣NOx吸附凈化的吸附劑特性[J]. 工程科學學報, 2022, 44(11): 1860-1867. doi: 10.13374/j.issn2095-9389.2021.11.01.001
    引用本文: 劉應書, 吳曉永, 李子宜, 楊雄, 劉文海, 侯環宇, 邢奕, 李金娟. 面向鋼鐵燒結煙氣NOx吸附凈化的吸附劑特性[J]. 工程科學學報, 2022, 44(11): 1860-1867. doi: 10.13374/j.issn2095-9389.2021.11.01.001
    LIU Ying-shu, WU Xiao-yong, LI Zi-yi, YANG Xiong, LIU Wen-hai, HOU Huan-yu, XING Yi, LI Jin-juan. Adsorbents for the adsorption purification of NOx in the ore-sintering flue gas[J]. Chinese Journal of Engineering, 2022, 44(11): 1860-1867. doi: 10.13374/j.issn2095-9389.2021.11.01.001
    Citation: LIU Ying-shu, WU Xiao-yong, LI Zi-yi, YANG Xiong, LIU Wen-hai, HOU Huan-yu, XING Yi, LI Jin-juan. Adsorbents for the adsorption purification of NOx in the ore-sintering flue gas[J]. Chinese Journal of Engineering, 2022, 44(11): 1860-1867. doi: 10.13374/j.issn2095-9389.2021.11.01.001

    面向鋼鐵燒結煙氣NOx吸附凈化的吸附劑特性

    doi: 10.13374/j.issn2095-9389.2021.11.01.001
    基金項目: 國家自然科學基金資助項目(21808012);“十三五”國家重點研發專項資助項目(2017YFC0210302);貴州省科技支撐計劃資助項目(黔科合支撐[2021]一般 497)
    詳細信息
      通訊作者:

      E-mail: ziyili@ustb.edu.cn

    • 中圖分類號: X701.7;TF09

    Adsorbents for the adsorption purification of NOx in the ore-sintering flue gas

    More Information
    • 摘要: 吸附法是有望同時實現煙氣NOx超低排放深度凈化與資源化的關鍵技術,高效NOx吸附劑是其核心關鍵,然而目前針對滿足應用需求的NOx吸附劑仍缺乏系統認識。本文基于煙氣NOx凈化效率及材料熱穩定性實際需求,分析挑選了沸石、金屬氧化物、硅鋁膠等代表性吸附劑,研究了NOx在各吸附劑上的吸附穿透、吸附量、程序升溫脫附等關鍵特性,結合吸附劑孔道特性對比發現,中低硅H-ZSM-5沸石兼具較高NOx凈化深度、NOx吸附量、較低脫附溫度且可獲得更易于資源化的NOx解吸氣,因而可作為優選NOx吸附劑。進一步地,隨著吸附溫度升高,硅鋁比(w(SiO2)/w(Al2O3) )為25、38的H-ZSM-5的NOx吸附量均降低,其中低硅H-ZSM-5的NOx吸附量較高,但吸附傳質系數較低。本文可為煙氣NOx吸附凈化的效益環保技術提供指導。

       

    • 圖  1  NOx吸附實驗系統

      Figure  1.  NOx adsorption experimental system

      圖  2  孔徑分布及87 K下Ar的吸附等溫線

      Figure  2.  Pore size distributions and adsorption isotherms of Ar at 87 K

      圖  3  各吸附劑的NOx穿透曲線(398 K)

      Figure  3.  NOx breakthrough curves on adsorbents (398 K)

      圖  4  H-ZSM-5_25在有氧和無氧條件下的NOx穿透曲線(298 K)

      Figure  4.  NOx breakthrough curves of H-ZSM-5_25 with and without oxygen (298 K)

      圖  5  NOx在各吸附劑的程序性升溫脫附(TPD)曲線(a)和NO與NO2含量圖(b)

      Figure  5.  Temperature-programmed desorption curves of NOx (a) and amounts of NO and NO2 (b) in the desorbed gas on each adsorbent

      圖  6  不同硅鋁比的H-ZSM-5在不同溫度下的穿透曲線

      Figure  6.  Breakthrough curves of H-ZSM-5 at different temperatures for different Si–Al ratios

      圖  7  H-ZSM-5_25、H-ZSM-5_38的NOx吸附量隨溫度的變化曲線

      Figure  7.  Variation curves of the NOx absorption capacity with temperature for H-ZSM-5_25 and H-ZSM-5_38

      圖  8  H-ZSM-5_25、H-ZSM-5_38的吸附速率曲線(298 K)及LDF模型擬合曲線

      Figure  8.  Adsorption uptake curves (298 K) of H-ZSM-5_25 and H-ZSM-5_38 along with linear driving force model fitting curves

      表  1  吸附劑的物理參數及NOx吸附量

      Table  1.   Physical parameters and NOx adsorption capacity of adsorbents

      AdsorbentsBrunauer–Emmett–
      Teller surface area/(m2·g–1)
      Pore volume/
      (cm3·g–1)
      Primary micropore channel/nmNOx adsorption capacity/
      (mmol·g–1)
      H-ZSM-5_253530.320.680.206
      H-ZSM-5_383370.300.720.127
      H-ZSM-5_1983970.430.720.013
      13X3930.481.000.181
      NaY5370.381.150.027
      Si–Al gel4630.431.170.016
      Fe–Mn–Ce990.094.580.200
      下載: 導出CSV

      表  2  LDF模型擬合參數

      Table  2.   Linear driving force model fitting parameters

      AdsorbentsR2kiC
      H-ZSM-5_250.998–1.14 × 10–4± 3.79 × 10–80.08 ± 5.83 × 10–4
      H-ZSM-5_380.995–2.19 × 10–4 ± 1.32 × 10–70.05 ± 0.01
      下載: 導出CSV
      中文字幕在线观看
    • [1] Shelef M. Selective catalytic reduction of NOx with N-free reductants. Chem Rev, 1995, 95(1): 209 doi: 10.1021/cr00033a008
      [2] Parvulescu V I, Grange P, Delmon B. Catalytic removal of NO. Catal Today, 1998, 46(4): 233 doi: 10.1016/S0920-5861(98)00399-X
      [3] Ministry of Ecology and Environment of the People’s Republic of China. Opinions on promoting the implementation of ultra-low emissions in the steel industry [EB/OL]. Government Information Disclosure (2019-04-28) [2021-11-01].https://www.mee.gov.cn/xxgk2018/xxgk/xxgk03/201904/t20190429_701463.html

      中華人民共和國生態環境部. 關于推進實施鋼鐵行業超低排放的意見[EB/OL]. 政府信息公開 (2019-04-28) [2021-11-01].https://www.mee.gov.cn/xxgk2018/xxgk/xxgk03/201904/t20190429_701463.html
      [4] Ministry of Ecology and Environment of the People's Republic of China. HJ 2053—2018 Technical Specifications for Flue Gas Ultra-low Emission Engineering of Coal-fired Power Plant. Beijing: China Environmental Press, 2018

      中華人民共和國生態環境部. HJ 2053—2018燃煤電廠超低排放煙氣治理工程技術規范. 北京: 中國環境科學出版社, 2018
      [5] Meng Z H, Wang C Y, Wang X R, et al. Simultaneous removal of SO2 and NOx from flue gas using (NH4)2S2O3/steel slag slurry combined with ozone oxidation. Fuel, 2019, 255: 115760 doi: 10.1016/j.fuel.2019.115760
      [6] Paulauskas, J?gi, Striūgas, et al. Application of non-thermal plasma for NOx reduction in the flue gases. Energies, 2019, 12(20): 3955 doi: 10.3390/en12203955
      [7] Zhang Q, He S L, Zhang Z, et al. Low-temperature selective catalytic reduction of NOz and anti-toxicity of MnOx–FeOy/TiO2–ZrO2–CeO2. Chin J Eng, 2020, 42(3): 321

      張晴, 賀拴玲, 張錚, 等. MnOx–FeOy/TiO2–ZrO2–CeO2低溫選擇性催化還原NOz和抗毒性研究. 工程科學學報, 2020, 42(3):321
      [8] Ding L, Qian L X, Yang T, et al. Influence of Zn in the iron ore sintering flue gas on the removal of NOx and dioxins by V2O5–WO3/TiO2 catalyst. Chin J Eng, 2021, 43(8): 1125

      丁龍, 錢立新, 楊濤, 等. 燒結煙氣中Zn對V2O5–WO3/TiO2催化劑脫除NOx和二噁英性能的影響. 工程科學學報, 2021, 43(8):1125
      [9] Xing Y, Zhang W B, Su W, et al. Research of ultra-low emission technologies of the iron and steel industry in China. Chin J Eng, 2021, 43(1): 1

      邢奕, 張文伯, 蘇偉, 等. 中國鋼鐵行業超低排放之路. 工程科學學報, 2021, 43(1):1
      [10] Yang R T. Gas Separation by Adsorption Processes. London: World Scientific, 1997
      [11] Ren F P, Tian X Z, Ren Y L, et al. Nitrogen dioxide-catalyzed aerobic oxidation of benzyl alcohols under cocatalyst and acid-free conditions. Catal Commun, 2017, 101: 98 doi: 10.1016/j.catcom.2017.08.003
      [12] Kong Y, Cha C Y. NOx adsorption on char in presence of oxygen and moisture. Carbon, 1996, 34(8): 1027 doi: 10.1016/0008-6223(96)00050-4
      [13] Hu M M, Zhang Z Q, Atkinson J D, et al. Porous materials for steady-state NO conversion: Comparisons of activated carbon fiber cloths, zeolites and metal-organic frameworks. Chem Eng J, 2019, 360: 89 doi: 10.1016/j.cej.2018.11.102
      [14] Machida M, Yoshii A, Kijima T. Temperature swing adsorption of NOx over ZrO2-based oxides. Int J Inorg Mater, 2000, 2(5): 413 doi: 10.1016/S1466-6049(00)00062-3
      [15] Xing N, Wang X P, Yu Q, et al. Adsorption performance of zeolites for NO and NO2. Chin J Catal, 2007, 28(3): 205 doi: 10.3321/j.issn:0253-9837.2007.03.006

      邢娜, 王新平, 于青, 等. 分子篩對NO和NO2的吸附性能. 催化學報, 2007, 28(3):205 doi: 10.3321/j.issn:0253-9837.2007.03.006
      [16] An J L, Wang Y S, Li X, et al. Analysis of the relationship between NO, NO2 and O3 concentrations in Beijing. Environ Sci, 2007, 28(4): 4706

      安俊琳, 王躍思, 李昕, 等. 北京大氣中NO、NO2和O3濃度變化的相關性分析. 環境科學, 2007, 28(4):4706
      [17] Brown C E, Hall P G. Physical adsorption of nitric oxide on graphite and silica and adsorption of gases on nitric oxide preadsorbed on carbon. J Colloid Interface Sci, 1973, 42(2): 334 doi: 10.1016/0021-9797(73)90297-X
      [18] Brown C E, Hall P G. Physical adsorption of nitric oxide on metal oxides. Surf Sci, 1973, 36(2): 569 doi: 10.1016/0039-6028(73)90403-2
      [19] Deng H, Yi H H, Tang X L, et al. Adsorption equilibrium for sulfur dioxide, nitric oxide, carbon dioxide, nitrogen on 13X and 5A zeolites. Chem Eng J, 2012, 188: 77 doi: 10.1016/j.cej.2012.02.026
      [20] Penkova A, Hadjiivanov K, Mihaylov M, et al. FTIR spectroscopic study of low temperature NO adsorption and NO + O2 coadsorption on H-ZSM-5. Langmuir, 2004, 20(13): 5425 doi: 10.1021/la0496643
      [21] Szanyi J, Hun Kwak J, Moline R A, et al. The adsorption of NO2 and the NO+O2 reaction on Na–Y, FAU: An in situ FTIR investigation. Phys Chem Chem Phys, 2003, 5(18): 4045 doi: 10.1039/B306585E
      [22] Liu Y S, Sun N Q, Li Z Y, et al. Recovery of high-purity NO2 and SO2 products from iron-ore sintering flue gas by distillation: Process design, optimization and analysis. Sep Purif Technol, 2021, 264: 118308 doi: 10.1016/j.seppur.2021.118308
      [23] Ghouma I, Jeguirim M, Dorge S, et al. Activated carbon prepared by physical activation of olive stones for the removal of NO2 at ambient temperature. Comptes Rendus Chimie, 2015, 18(1): 63 doi: 10.1016/j.crci.2014.05.006
      [24] Liu H R. Variation of spontaneous combustion point of activated carbon with different oxidation degree. Fire Sci Technol, 2013, 32(4): 367 doi: 10.3969/j.issn.1009-0029.2013.04.006

      劉函如. 不同氧化程度的活性炭自燃點變化規律研究. 消防科學與技術, 2013, 32(4):367 doi: 10.3969/j.issn.1009-0029.2013.04.006
      [25] Silas K, Wan Azlina Wan Ab Karim Ghani, Choong T S Y, et al. Carbonaceous materials modified catalysts for simultaneous SO2/NOx removal from flue gas: A review. Catal Rev, 2019, 61(1): 134 doi: 10.1080/01614940.2018.1482641
      [26] Jiang H X, Wang Q Y, Wang H Q, et al. MOF-74 as an efficient catalyst for the low-temperature selective catalytic reduction of NOx with NH3. ACS Appl Mater Interfaces, 2016, 8(40): 26817 doi: 10.1021/acsami.6b08851
      [27] Bauer S, Serre C, Devic T, et al. High-throughput assisted rationalization of the formation of metal organic frameworks in the iron(III) aminoterephthalate solvothermal system. Inorg Chem, 2008, 47(17): 7568 doi: 10.1021/ic800538r
      [28] Zhang Z Q, Atkinson J D, Jiang B Q, et al. NO oxidation by microporous zeolites: Isolating the impact of pore structure to predict NO conversion. Appl Catal B Environ, 2015, 163: 573 doi: 10.1016/j.apcatb.2014.06.044
      [29] Liu Y S, You Y, Li Z Y, et al. NOx removal with efficient recycling of NO2 from iron-ore sintering flue gas: A novel cyclic adsorption process. J Hazard Mater, 2021, 407: 124380 doi: 10.1016/j.jhazmat.2020.124380
      [30] You Y, Liu Y S, Yang X, et al. A new adsorption process for flue gas NOx purification and recovery. CIESC J, 2021, 72(4): 2132

      游洋, 劉應書, 楊雄, 等. 面向煙氣NOx凈化與回收的新型吸附工藝. 化工學報, 2021, 72(4):2132
      [31] Huang H Y, Yang R T. Removal of NO by reversible adsorption on Fe?Mn based transition metal oxides. Langmuir, 2001, 17(16): 4997 doi: 10.1021/la0102657
      [32] Yang X, Liu Y S, Li Z Y, et al. Vacuum exhaust process in pilot-scale vacuum pressure swing adsorption for coal mine ventilation air methane enrichment. Energies, 2018, 11(5): 1030 doi: 10.3390/en11051030
      [33] Li Z Y, Liu Y S, Yang X, et al. Desorption kinetics of naphthalene and acenaphthene over two activated carbons via thermogravimetric analysis. Energy Fuels, 2015, 29(8): 5303 doi: 10.1021/acs.energyfuels.5b01159
      [34] Li G, Xiao P, Zhang J, et al. The role of water on postcombustion CO2 capture by vacuum swing adsorption: Bed layering and purge to feed ratio. Aiche J, 2014, 60(2): 673 doi: 10.1002/aic.14281
      [35] Li Z Y, Liu Y S, Wang H H, et al. A numerical modelling study of SO2 adsorption on activated carbons with new rate equations. Chem Eng J, 2018, 353: 858 doi: 10.1016/j.cej.2018.07.119
      [36] Zhu X Q, Liu Y S, Yang X, et al. Study of a novel rapid vacuum pressure swing adsorption process with intermediate gas pressurization for producing oxygen. Adsorption, 2017, 23(1): 175 doi: 10.1007/s10450-016-9843-4
      [37] Mendes A M M, Costa C A V, Rodrigues A E. Linear driving force approximation for isothermal non-isobaric diffusion/convection with binary Langmuir adsorption. Gas Sep Purif, 1995, 9(4): 259 doi: 10.1016/0950-4214(95)00008-Y
      [38] Zhang B W, Tang X L, Yi H H, et al. Study on NO adsorptive removal on modified activated carbon. New Chem Mater, 2015, 43(7): 111

      張波文, 唐曉龍, 易紅宏, 等. 改性活性炭吸附去除NO實驗研究. 化工新型材料, 2015, 43(7):111
      [39] Zhang J Q, Liu Y Y, Fan W B, et al. Adsorption and temperature programmed desorption of NO, NO+O2, NO2 and NO + NO2 over CoH-ZSM-5. Fuel, 2007, 86(10-11): 1577 doi: 10.1016/j.fuel.2006.11.011
      [40] Loiland J A, Lobo R F. Low temperature catalytic NO oxidation over microporous materials. J Catal, 2014, 311: 412 doi: 10.1016/j.jcat.2013.12.013
      [41] Li R, Wu B, Chen Y Q, et al. Influence of polyethylene glycol on the catalytic activity of MnFeOx for NO oxidation at low-temperature. Catal Lett, 2019, 149(7): 1864 doi: 10.1007/s10562-019-02793-9
      [42] Wang Z, Guo M, Mu X Y, et al. Highly sensitive capacitive gas sensing at ionic liquid-electrode interfaces. Anal Chem, 2016, 88(3): 1959 doi: 10.1021/acs.analchem.5b04677
    • 加載中
    圖(8) / 表(2)
    計量
    • 文章訪問數:  554
    • HTML全文瀏覽量:  331
    • PDF下載量:  53
    • 被引次數: 0
    出版歷程
    • 收稿日期:  2021-11-01
    • 網絡出版日期:  2022-02-22
    • 刊出日期:  2022-11-01

    目錄

      /

      返回文章
      返回