• 《工程索引》(EI)刊源期刊
    • 中文核心期刊
    • 中國科技論文統計源期刊
    • 中國科學引文數據庫來源期刊

    留言板

    尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

    姓名
    郵箱
    手機號碼
    標題
    留言內容
    驗證碼

    改性煉鋼污泥催化劑的催化脫硝性能

    田京雷 侯環宇 郭澤鋒 陳靖 邢奕 蘇偉

    田京雷, 侯環宇, 郭澤鋒, 陳靖, 邢奕, 蘇偉. 改性煉鋼污泥催化劑的催化脫硝性能[J]. 工程科學學報, 2023, 45(3): 499-508. doi: 10.13374/j.issn2095-9389.2021.12.16.006
    引用本文: 田京雷, 侯環宇, 郭澤鋒, 陳靖, 邢奕, 蘇偉. 改性煉鋼污泥催化劑的催化脫硝性能[J]. 工程科學學報, 2023, 45(3): 499-508. doi: 10.13374/j.issn2095-9389.2021.12.16.006
    TIAN Jing-lei, HOU Huan-yu, GUO Ze-feng, CHEN Jing, XING Yi, SU Wei. Study of the catalytic denitrification activity of a modified steelmaking sludge catalyst[J]. Chinese Journal of Engineering, 2023, 45(3): 499-508. doi: 10.13374/j.issn2095-9389.2021.12.16.006
    Citation: TIAN Jing-lei, HOU Huan-yu, GUO Ze-feng, CHEN Jing, XING Yi, SU Wei. Study of the catalytic denitrification activity of a modified steelmaking sludge catalyst[J]. Chinese Journal of Engineering, 2023, 45(3): 499-508. doi: 10.13374/j.issn2095-9389.2021.12.16.006

    改性煉鋼污泥催化劑的催化脫硝性能

    doi: 10.13374/j.issn2095-9389.2021.12.16.006
    基金項目: 河鋼集團有限公司科技計劃重點資助項目(HG2020204-2)
    詳細信息
      通訊作者:

      E-mail: suwei@ustb.edu.cn

    • 中圖分類號: X511

    Study of the catalytic denitrification activity of a modified steelmaking sludge catalyst

    More Information
    • 摘要: 選擇性催化還原技術是工業煙氣脫硝技術中最常用的煙氣脫硝方法。但催化劑的制備過程較為復雜,并且制備成本較高。本文以鋼鐵企業在生產過程中產生的煉鋼污泥作為原料,采用焙燒改性、硫酸改性和硫酸–焙燒改性三種不同方法對其進行處理,制備了一種用于選擇性催化還原氮氧化物的新型催化劑。采用比表面積分析法(BET)、掃描電鏡分析(SEM)、X射線衍射分析(XRD)、X射線熒光光譜分析(XRF)和NH3程序升溫脫附分析(NH3-TPD)等表征手段,對改性前后煉鋼污泥催化劑物理化學性質的變化進行分析研究。結果表明:催化劑的主要活性組分為Fe、Mn、V、Ti;焙燒改性對催化劑活性具有一定的提升效果,可以使催化劑中的Fe3O4轉化為具有更好脫硝活性的α-Fe2O3;硫酸改性后的催化劑具有優異的催化活性,300 °C時可以達到88.5%的脫硝效率;硫酸改性改變了催化劑表面形貌,減小了晶粒尺寸,生成了大量的硫酸鹽物種,給催化劑表面提供了更多酸性位點,從而促進催化性能的提升。該研究為低成本脫硝催化劑的開發提供了基礎,促進了冶金工業的清潔生產。

       

    • 圖  1  活性測試實驗流程示意圖

      Figure  1.  Schematic diagram of the activity test experiment process

      圖  2  焙燒改性SS催化劑的脫硝性能

      Figure  2.  Denitrification performance of the SS catalysts modified by roasting

      圖  3  硫酸改性SS催化劑的脫硝性能

      Figure  3.  Denitrification performance of the SS catalysts modified by sulfuric acid

      圖  4  不同改性方式對SS催化劑脫硝性能的影響

      Figure  4.  Effect of different modification methods on denitration denitrification performance of the SS catalysts

      圖  5  SS催化劑在200~450 °C時將NO氧化為NO2的轉化率

      Figure  5.  Conversion rates of the SS catalysts to oxidize NO to NO2 at 200–450 °C

      圖  6  催化劑掃描電鏡分析譜圖. (a)SS; (b)SS-C-600; (c)SS-A-5; (d)SS-A-C

      Figure  6.  SEM analysis spectrum of catalysts: (a)SS; (b)SS-C-600; (c)SS-A-5; (d)SS-A-C

      圖  7  (a)催化劑的氮氣吸附–脫附等溫線;(b)基于BJH法計算的孔徑分布

      Figure  7.  (a) Nitrogen adsorption–desorption isotherms of the catalysts; (b) pore size distributions calculated using the BJH method

      圖  8  催化劑的XRD分析譜圖

      Figure  8.  XRD patterns of the catalysts

      圖  9  催化劑的NH3-TPD曲線

      Figure  9.  NH3-TPD results of the catalysts

      圖  10  (a)SS催化劑隨時間變化NOx的吸附情況;(b) SS催化劑隨溫度變化NOx的脫附情況

      Figure  10.  (a) NOx adsorption of the SS catalysts with time; (b) NOx desorption of SS catalysts with temperature

      表  1  催化劑元素分析結果(質量分數)

      Table  1.   Elemental analysis of the catalysts %

      SampleFe2O3CaOMgOSiO2ZnOAl2O3MnOTiO2V2O5SOxSum
      SS69.8419.424.161.531.200.560.270.130.110.5697.78
      SS-C-60067.3718.537.231.800.980.740.250.110.100.7497.85
      SS-A-558.7015.293.321.250.860.400.230.120.1018.2498.50
      SS-A-C58.7216.513.061.270.940.450.210.110.0916.8598.21
      下載: 導出CSV

      表  2  催化劑的BET分析結果

      Table  2.   BET analysis results of the catalysts

      SampleSBET/(m2·g–1)Pore volume/(cm3·g–1)Pore size/nm
      SS210.06318111.946
      SS-C-60060.04653532.981
      SS-A-5120.05512518.165
      SS-A-C110.0767226.777
      下載: 導出CSV

      表  3  催化劑的NH3脫附量(基于峰面積計算)

      Table  3.   NH3 desorption amounts of catalysts (based on peak area calculation)

      SampleWeak acid sites (a.u.)Medium strong and strong
      acid sites (a.u.)
      Total (a.u.)
      SS86.87241.82328.69
      SS-C-60084.89145.73230.62
      SS-A-5113.08284.70397.78
      SS-A-C96.92176.18273.10
      下載: 導出CSV
      中文字幕在线观看
    • [1] Li G L. Hazards of nitrogen oxides to the environment and pollution control technology. Shanxi Chem Ind, 2019, 39(5): 123 doi: 10.16525/j.cnki.cn14-1109/tq.2019.05.44

      李國亮. 氮氧化物對環境的危害及污染控制技術. 山西化工, 2019, 39(5):123 doi: 10.16525/j.cnki.cn14-1109/tq.2019.05.44
      [2] Chen G B, Wan X, Yang G H, et al. Traffic-related air pollution and lung cancer: A meta-analysis. Thorac Cancer, 2015, 6(3): 307
      [3] Goldstein E, Peek N F, Parks N J, et al. Fate and distribution of inhaled nitrogen dioxide in rhesus monkeys. Am Rev Respir Dis, 1977, 115(3): 403
      [4] Lai J K, Wachs I. A perspective on the selective catalytic reduction (SCR) of NO with NH3 by supported V2O5–WO3/TiO2 catalysts. ACS Catal, 2018, 8(7): 6537 doi: 10.1021/acscatal.8b01357
      [5] Wang C, Qin R Y, Zhang X F, et al. Safe disposal of deactivated commercial selective catalytic reduction catalyst (V2O5–MoO3/TiO2) as a low-cost and regenerable sorbent to recover gaseous elemental mercury in smelting flue gas. J Hazard Mater, 2021, 406: 124744
      [6] Zhang Q J, Wu Y F, Yuan H R. Recycling strategies of spent V2O5–WO3/TiO2 catalyst: A review. Resour Conserv Recycl, 2020, 161: 104983
      [7] Husnain N, Li K, Anwar M, et al. Iron oxide-based catalysts for low-temperature selective catalytic reduction of NOx with NH3. Rev Chem Eng, 2018, 35(2): 239
      [8] Zhang H L, Long H M, Li J X, et al. Research progress in iron-based catalysts for the selective catalytic reduction of NOx by NH3. Chin J Inorg Chem, 2019, 35(5): 753 doi: 10.11862/CJIC.2019.099

      張洪亮, 龍紅明, 李家新, 等. 鐵基催化劑用于氨選擇性催化還原氮氧化物研究進展. 無機化學學報, 2019, 35(5):753 doi: 10.11862/CJIC.2019.099
      [9] Zhang J, Li X C, Chen P G, et al. Research status and prospect on vanadium-based catalysts for NH3-SCR denitration. Materials (Basel), 2018, 11(9): 1632 doi: 10.3390/ma11091632
      [10] Liu Z M, Su H, Chen B H, et al. Activity enhancement of WO3 modified Fe2O3 catalyst for the selective catalytic reduction of NOx by NH3. Chem Eng J, 2016, 299: 255 doi: 10.1016/j.cej.2016.04.100
      [11] Gong Z G, Niu S, Zhang Y J, et al. Facile synthesis of porous α-Fe2O3 nanostructures from MIL-100(Fe) via sacrificial templating method, as efficient catalysts for NH3-SCR reaction. Mater Res Bull, 2020, 123: 110693 doi: 10.1016/j.materresbull.2019.110693
      [12] Ciambelli P, Fortuna M E, Sannino D, et al. The influence of sulphate on the catalytic properties of V2O5–TiO2 and WO3–TiO2 in the reduction of nitric oxide with ammonia. Catal Today, 1996, 29(1-4): 161
      [13] Chen W S, Zhang C G, Hu F L, et al. Study on denitrification performance of sinter catalyst modified by sulphate. Sinter Pelletizing, 2019, 44(5): 65 doi: 10.13403/j.sjqt.2019.05.079

      陳旺生, 張成剛, 胡發立, 等. 硫酸改性燒結礦催化劑脫硝性能研究. 燒結球團, 2019, 44(5):65 doi: 10.13403/j.sjqt.2019.05.079
      [14] Lian Z H, Shan W P, Wang M, et al. The balance of acidity and redox capability over modified CeO2 catalyst for the selective catalytic reduction of NO with NH3. J Environ Sci, 2019, 79: 273
      [15] Ye D, Wang X X, Liu H, et al. Insights into the effects of sulfate species on CuO/TiO2 catalysts for NH3-SCR reactions. Mol Catal, 2020, 496: 111191 doi: 10.1016/j.mcat.2020.111191
      [16] Zhao Q S, Xiang J, Sun L S, et al. Adsorption and oxidation of NH3 and NO over sol-gel-derived CuO?CeO2?MnOx/γ-Al2O3 Catalysts. Energy &Fuels, 2009, 23(3): 1539
      [17] Chang H Z, Chen X Y, Li J H, et al. Improvement of activity and SO2 tolerance of Sn-modified MnOx–CeO2 catalysts for NH3-SCR at low temperatures. Environ Sci &Technol, 2013, 47(10): 5294
      [18] Giuliana M, Giuseppina C, Claudio M, et al. Structural and surface characterization of pure and sulfated iron oxides. Chem Mater, 2003, 15(3): 675
      [19] Zhao L, Han J, Wu Y W, et al. Study on alkaline earth metal poisoning of vanadium-titanium based SCR denitration catalyst. Chem Ind Eng Prog, 2019, 38(3): 1419 doi: 10.16085/j.issn.1000-6613.2018-0676

      趙莉, 韓健, 吳洋文, 等. 釩鈦基SCR脫硝催化劑堿土金屬中毒. 化工進展, 2019, 38(3):1419 doi: 10.16085/j.issn.1000-6613.2018-0676
      [20] Benson S A, Laumb J D, Crocker C R, et al. SCR catalyst performance in flue gases derived from subbituminous and lignite coals. Fuel Process Technol, 2005, 86(5): 577
      [21] Xing Y, Zhang H, Su W, et al. Mineral-derived catalysts optimized for selective catalytic reduction of NOx with NH3. J Clean Prod, 2020, 289(1): 125756
      [22] Jiang S Y, Zhou R X. Ce doping effect on performance of the Fe/β catalyst for NOx reduction by NH3. Fuel Process Technol, 2015, 133: 220 doi: 10.1016/j.fuproc.2015.02.004
      [23] Zhang J, Huang Z W, Du Y Y, et al. Identification of active sites over Fe2O3-based architecture: The promotion effect of H2SO4 erosion synthetic protocol. ACS Appl Energy Mater, 2018, 1(6): 2385 doi: 10.1021/acsaem.8b00353
      [24] Chen X, Gui K T, Gu S C. Catalytic denitration activity and sulfur resistance of modified siderite catalysts. J Fuel Chem Technol, 2019, 47(3): 370 doi: 10.3969/j.issn.0253-2409.2019.03.016

      陳鑫, 歸柯庭, 顧少宸. 改性菱鐵礦催化劑的催化脫硝活性及抗硫性研究. 燃料化學學報, 2019, 47(3):370 doi: 10.3969/j.issn.0253-2409.2019.03.016
      [25] Du H, Han Z T, Wang Q M, et al. Effects of ferric and Manganese precursors on catalytic activity of Fe–Mn/TiO2 catalysts for selective reduction of NO with ammonia at low temperature. Environ Sci Pollut Res Int, 2020, 27(32): 40870 doi: 10.1007/s11356-020-10073-y
      [26] Xu T F, Wu X D, Liu X S, et al. Effect of Barium sulfate modification on the SO2 tolerance of V2O5/TiO2 catalyst for NH3-SCR reaction. J Environ Sci, 2017, 57: 110
      [27] Liu F D, Shan W P, Lian Z H, et al. The smart surface modification of Fe2O3 by WOx for significantly promoting the selective catalytic reduction of NOx with NH3. Appl Catal B Environ, 2018, 230: 165 doi: 10.1016/j.apcatb.2018.02.052
    • 加載中
    圖(10) / 表(3)
    計量
    • 文章訪問數:  428
    • HTML全文瀏覽量:  171
    • PDF下載量:  46
    • 被引次數: 0
    出版歷程
    • 收稿日期:  2021-12-16
    • 網絡出版日期:  2022-03-28
    • 刊出日期:  2023-03-01

    目錄

      /

      返回文章
      返回