• 《工程索引》(EI)刊源期刊
    • 中文核心期刊
    • 中國科技論文統計源期刊
    • 中國科學引文數據庫來源期刊

    留言板

    尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

    姓名
    郵箱
    手機號碼
    標題
    留言內容
    驗證碼

    廢石全尾砂高濃度充填料漿的均質化模型

    楊曉炳 尹升華 郝碩 楊航

    楊曉炳, 尹升華, 郝碩, 楊航. 廢石全尾砂高濃度充填料漿的均質化模型[J]. 工程科學學報, 2022, 44(7): 1115-1125. doi: 10.13374/j.issn2095-9389.2021.12.18.004
    引用本文: 楊曉炳, 尹升華, 郝碩, 楊航. 廢石全尾砂高濃度充填料漿的均質化模型[J]. 工程科學學報, 2022, 44(7): 1115-1125. doi: 10.13374/j.issn2095-9389.2021.12.18.004
    YANG Xiao-bing, YIN Sheng-hua, HAO Shuo, YANG Hang. Homogenization mathematical model of the cemented filling slurry with crushing waste rock and whole tailings[J]. Chinese Journal of Engineering, 2022, 44(7): 1115-1125. doi: 10.13374/j.issn2095-9389.2021.12.18.004
    Citation: YANG Xiao-bing, YIN Sheng-hua, HAO Shuo, YANG Hang. Homogenization mathematical model of the cemented filling slurry with crushing waste rock and whole tailings[J]. Chinese Journal of Engineering, 2022, 44(7): 1115-1125. doi: 10.13374/j.issn2095-9389.2021.12.18.004

    廢石全尾砂高濃度充填料漿的均質化模型

    doi: 10.13374/j.issn2095-9389.2021.12.18.004
    基金項目: 中央高校基本科研業務費專項資金資助項目(FRF-TP-20-039A1);礦物加工科學與技術國家重點實驗室開放基金資助項目(BGRIMM-KJSKL-2021-18);中國博士后科學基金資助項目(2021M690363)
    詳細信息
      通訊作者:

      E-mail: ustxsh@163.com

    • 中圖分類號: TD853.34

    Homogenization mathematical model of the cemented filling slurry with crushing waste rock and whole tailings

    More Information
    • 摘要: 針對廢石全尾砂高濃度充填料漿管輸易堵管及充填體分層的問題,開展減水劑、攪拌參數等對料漿均質性影響的試驗及料漿均質化定量表征的研究。首先基于泌水?坍落度試驗確定了聚羧酸系(PC)減水劑及其摻量區間,獲得了PC作用下的料漿流變參數及充填體強度的變化規律。其次,通過圖像處理技術分析攪拌料漿表面特征,明確了PC作用下攪拌時長及廢尾比(廢石與尾礦質量比)對料漿均質化的影響規律。最后,構建了廢石全尾砂高濃度充填料漿的均質化模型。結果表明,PC作用能夠降低料漿的屈服應力與塑性黏度系數,改善料漿流動性。合理摻量可以提升充填體的早期強度,但對28 d強度有削弱。料漿表面圖像信息熵越高、黑色像素點占比越小,料漿均質化程度越高,且均質化程度隨攪拌時長、廢尾比的增大呈先增大后減小趨勢。當PC的質量分數為0.26%~0.5%時,料漿均質化程度高,PC質量分數為0.5%時料漿屈服應力和塑性黏度達到最小值,分別為202.25 Pa和0.79 Pa·s。

       

    • 圖  1  粒徑特征分布曲線. (a)廢石; (b)尾砂

      Figure  1.  Characteristic distribution curve of particle size: (a)waste rock; (b)tailings

      圖  2  減水劑作用下料漿泌水?坍落變化情況

      Figure  2.  Changes of slurry bleeding and slump under the action of water?reducing agent

      圖  3  PC作用下料漿的剪切應力?剪切速率曲線

      Figure  3.  Shear stress?shear rate curve of slurry under the action of PC

      圖  4  PC摻量與屈服應力、塑性黏度的回歸結果

      Figure  4.  Regression results of PC content, yield stress and plastic viscosity

      圖  5  充填體抗壓強度曲線

      Figure  5.  Characterization curve of compressive strength of filling body

      圖  6  充填體抗壓強度與影響因素關系曲面

      Figure  6.  Relationship between compressive strength of filling body and factors

      圖  7  不同PC質量分數條件下的攪拌試驗結果. (a)ω=0;(b)ω=0.50%

      Figure  7.  Stirring test result with different ω: (a)ω=0;(b)ω=0.50%

      圖  8  攪拌時間與廢尾比交互作用下表面圖像信息熵變化. (a) ω=0(R2=0.9951);(b) ω=0.5%(R2=0.9333)

      Figure  8.  Change of surface image information entropy under the interaction of mixing time and rock/tailingratio:(a) ω=0(R2=0.9951) ; (b) ω=0.5%(R2=0.9333)

      圖  9  黑色像素點占比及二值化結果. (a)ω=0.5%;(b)ω=0

      Figure  9.  Proportion of black pixels and the result of binarization:(a) ω = 0.5% ; (b) ω = 0

      圖  10  全尾砂廢石充填料漿中PC的均質化作用機理

      Figure  10.  Homogenization mechanism of polycarboxylate in filler slurry of whole tailings and waste rock

      圖  11  水泥凈漿的Zeta電位與PC摻量的關系圖

      Figure  11.  Relationship between the Zeta potential of the cement paste and the PC content

      表  1  減水劑的性能指標

      Table  1.   Performance index of water-reducing agent

      TypepHCl? content/%Na2SO4 content/%
      PC6.200.062.60
      FDN7.00–9.00≤1.00≤5.00
      AK9.720.280.74
      下載: 導出CSV

      表  2  摻PC減水劑膠結體強度測試結果

      Table  2.   Strength test results of cement mixed with PC water-reducing agent

      No.ω/%Compressive strength, σ/MPa
      3 d7 d28 d
      10.002.353.776.54
      20.103.115.147.72
      30.203.464.976.31
      40.303.265.095.77
      50.402.784.425.59
      60.502.433.955.26
      下載: 導出CSV

      表  3  不同條件下料漿表面單元及整體圖像的熵值

      Table  3.   Entropy of the surface unit and the overall image of the slurry under different conditions

      No.Time/minRock/tailing ratioω = 0ω = 0.50%
      Maximum entropy
      unit
      Minimum
      entropy unit
      Average unit entropyOverall
      image
      Maximum entropy
      unit
      Minimum entropy
      unit
      Average unit entropyOverall
      image
      136:43.963.733.8557.74 4.203.964.0861.18
      237:33.983.753.8758.00 4.213.924.0660.95
      335:53.973.703.8457.59 4.173.934.0560.80
      446:44.073.853.9659.41 4.274.044.1662.36
      547:34.063.833.9559.18 4.274.024.1562.21
      645:54.023.783.9058.51 4.234.004.1161.72
      756:44.013.773.8958.37 4.264.004.1361.98
      857:34.003.763.8858.18 4.193.954.0761.01
      955:54.043.813.9258.86 4.213.964.0961.29
      下載: 導出CSV

      表  4  料漿表面圖像二值化后的黑色像素點占比

      Table  4.   Percentage of black pixels after binarization of the slurry surface image

      No.Time/minWaste to tail ratioPercentage of black pixels (h)/%
      ω=0ω = 0.50%
      135∶562.2340.33
      236∶463.6535.15
      337∶358.5542.43
      445∶516.4614.40
      546∶413.9813.85
      647∶315.2214.64
      755∶523.2519.44
      856∶421.5420.05
      957∶321.9421.85
      下載: 導出CSV
      中文字幕在线观看
    • [1] Li X B, Zhou J, Wang S F, et al. Review and practice of deep mining for solid mineral resources. Chin J Nonferrous Met, 2017, 27(6): 1236

      李夕兵, 周健, 王少鋒, 等. 深部固體資源開采評述與探索. 中國有色金屬學報, 2017, 27(6):1236
      [2] Cai M F. Development of China's metal mines in the 21st century. China Min Mag, 2001, 10(1): 11 doi: 10.3969/j.issn.1004-4051.2001.01.005

      蔡美峰. 中國金屬礦山21世紀的發展前景評述. 中國礦業, 2001, 10(1):11 doi: 10.3969/j.issn.1004-4051.2001.01.005
      [3] Cheng H Y, Wu A X, Wu S C, et al. Research status and development trend of solid waste backfill in metal mines. Chin J Eng, 2022, 44(1): 11

      程海勇, 吳愛祥, 吳順川, 等. 金屬礦山固廢充填研究現狀與發展趨勢. 工程科學學報, 2022, 44(1):11
      [4] Wu A X, Yang Y, Cheng H Y, et al. Status and prospects of paste technology in China. Chin J Eng, 2018, 40(5): 517

      吳愛祥, 楊瑩, 程海勇, 等. 中國膏體技術發展現狀與趨勢. 工程科學學報, 2018, 40(5):517
      [5] Wang X M, Zhao J W, Zhang Q L, et al. Optimal mining model of transition from open-pit to underground mining. J Central South Univ (Sci Technol), 2012, 43(4): 1434

      王新民, 趙建文, 張欽禮, 等. 露天轉地下最佳開采模式. 中南大學學報(自然科學版), 2012, 43(4):1434
      [6] Ben-Awuah E, Richter O, Elkington T, et al. Strategic mining options optimization: Open pit mining, underground mining or both. Int J Min Sci Technol, 2016, 26(6): 1065 doi: 10.1016/j.ijmst.2016.09.015
      [7] Wu A X, Li H, Cheng H Y, et al. Status and prospects of research on the rheology of paste backfill using unclassified tailings (Part 2): Rheological measurement and prospects. Chin J Eng, 2021, 43(4): 451

      吳愛祥, 李紅, 程海勇, 等. 全尾砂膏體流變學研究現狀與展望(下): 流變測量與展望. 工程科學學報, 2021, 43(4):451
      [8] Ruan Z E, Wu A X, Wang Y M, et al. Multiple response optimization of key performance indicators of cemented paste backfill of total solid waste. Chin J Eng, 2022, 44(4): 496

      阮竹恩, 吳愛祥, 王貽明, 等. 全固廢膏體關鍵性能指標的多目標優化. 工程科學學報, 2022, 44(4):496
      [9] Mou H W, Lv W S, Yang P. Application of a spiral pipe in a low stowing gradient backfilling pipeline and amendment of stowing gradient. Chin J Eng, 2016, 38(8): 1069

      牟宏偉, 呂文生, 楊鵬. 螺旋管在小倍線充填中的應用及充填倍線公式修正. 工程科學學報, 2016, 38(8):1069
      [10] Zhu L P, Ni W, Gao S J, et al. Adaptability and early hydration of a cementing agent prepared with red mud, slag, flue gas desulphurization gypsum and a little cement clinker. Chin J Eng, 2015, 37(4): 414

      祝麗萍, 倪文, 高術杰, 等. 赤泥?礦渣?脫硫石膏?少熟料膠結劑的適應性及早期水化. 工程科學學報, 2015, 37(4):414
      [11] Wang J D, Wu A X, Wang Y M, et al. Evaluation model and experimental study for segregation resistance of paste with coarse aggregate. J China Univ Min Technol, 2016, 45(5): 866

      王建棟, 吳愛祥, 王貽明, 等. 粗骨料膏體抗離析性能評價模型與實驗研究. 中國礦業大學學報, 2016, 45(5):866
      [12] Kou Y P, Qi Z J, Sheng Y H, et al. Study on time-dependent rheological parameters of unclassified tailings cemented slurry under motion state. Nonferrous Met Min Sect, 2019, 71(1): 15

      寇云鵬, 齊兆軍, 盛宇航, 等. 運動狀態下全尾砂膠結料漿流變參數時變性研究. 有色金屬(礦山部分), 2019, 71(1):15
      [13] Li X, Li C P, Yan B H, et al. Analysis of the influence factors of paste stirring based on discrete element method. Met Mine, 2021(3): 19

      李雪, 李翠平, 顏丙恒, 等. 基于離散元的膏體攪拌影響因素分析. 金屬礦山, 2021(3):19
      [14] Yan Z P, Yin S H, Yan R F, et al. The effect of mixing time on the homogeneity and early strength of the coarse aggregate paste. Chin J Nonferrous Met,http://kns.cnki.net/kcms/detail/43.1238.TG.20210824.1021.002.html

      閆澤鵬, 尹升華, 嚴榮富, 等. 攪拌時間對粗骨料膏體均質性及早期強度的影響. 中國有色金屬學報,http://kns.cnki.net/kcms/detail/43.1238.TG.20210824.1021.002.html
      [15] Wang H J, Yang L H, Wang Y, et al. Multi-scale materials’ dispersive mixing technology of unclassified tailings Paste. J Wuhan Univ Technol, 2017, 39(12): 76

      王洪江, 楊柳華, 王勇, 等. 全尾砂膏體多尺度物料攪拌均質化技術. 武漢理工大學學報, 2017, 39(12):76
      [16] Yang Z Q, Wang Y Q, Gao Q, et al. Research on pumping water reducing agent affecting on the strength of backfilling body and workability of paste slurry with tailing and rod grinding sand. J Fuzhou Univ Nat Sci, 2015, 43(1): 129

      楊志強, 王永前, 高謙, 等. 泵送減水劑對尾砂-棒磨砂膏體料漿和易性與充填體強度影響研究. 福州大學學報(自然科學版), 2015, 43(1):129
      [17] Cao E X. Research on Mechanism of Polycarboxylate Superplasticizer on Rheological Properties of Cement Paste [Dissertation]. Beijing: Tsinghua University, 2011

      曹恩祥. 聚羧酸減水劑對水泥凈漿體系流變性能的作用機理研究[學位論文]. 北京: 清華大學, 2011
      [18] Jézéquel P H, Collin V. Mixing of concrete or mortars: Dispersive aspects. Cem Concr Res, 2007, 37(9): 1321 doi: 10.1016/j.cemconres.2007.05.007
      [19] Gao J C, Cui X X, Shen Y F, et al. Fabrication of HDPE composites via a novel friction stir processing technology. J Thermoplast Compos Mater, 2019, 32(10): 1305 doi: 10.1177/0892705718796543
      [20] Qian S S, Yao Y, Wang Z M, et al. Synthesis and mechanism of polyphosphate superplasticizer. J Chin Ceram Soc, 2021, 49(5): 910

      錢珊珊, 姚燕, 王子明, 等. 聚膦酸減水劑的合成、表征及機理. 硅酸鹽學報, 2021, 49(5):910
      [21] Dong Y. Research on Multi-Solid Waste Collaborative Comprehensive Utilization of Mining Backfill in Jinchuan Mine [Dissertation]. Beijing: University of Science and Technology Beijing, 2019

      董越. 多固廢資源在金川礦山充填采礦中協同綜合利用研究[學位論文]. 北京: 北京科技大學, 2019
      [22] Basu P, Thomas B S, Gupta R C, et al. Properties of sustainable self-compacting concrete incorporating discarded sandstone slurry. J Clean Prod, 2021, 281: 125313 doi: 10.1016/j.jclepro.2020.125313
      [23] Xiao C Y, Zhu W X. Threshold selection algorithm for image segmentation based on Otsu rule and image entropy. Comput Eng, 2007, 33(14): 188 doi: 10.3969/j.issn.1000-3428.2007.14.066

      肖超云, 朱偉興. 基于Otsu準則及圖像熵的閾值分割算法. 計算機工程, 2007, 33(14):188 doi: 10.3969/j.issn.1000-3428.2007.14.066
      [24] Yang L H, Wang H J, Wu A X, et al. Status and development tendency of the full-tailings paste mixing technology. Met Mine, 2016(7): 34 doi: 10.3969/j.issn.1001-1250.2016.07.005

      楊柳華, 王洪江, 吳愛祥, 等. 全尾砂膏體攪拌技術現狀及發展趨勢. 金屬礦山, 2016(7):34 doi: 10.3969/j.issn.1001-1250.2016.07.005
      [25] Wang C Y, Zhao H, Dai Z H, et al. Effect of surfactant on the rheological properties of hydrophilic particle suspension. Chin J Appl Chem, 2021, 38(4): 398

      王春雨, 趙輝, 代正華, 等. 表面活性劑對親水性顆粒懸浮液流變性的影響. 應用化學, 2021, 38(4):398
      [26] Du X D, Liu M, Bi Y, et al. Effect of polymethyl carboxylic acid water reducing agent on zeta potential of cement slurry and its rheological properties// A Compilation of Excellent Papers of Cologne Cup 2016 on New Progress in Research and Application of Chemical Admixtures and Mineral Admixtures in China. Qingdao, 2016: 186

      杜小弟, 劉明, 畢耀, 等. 聚甲基羧酸減水劑對水泥漿體Zeta電位及其流變性影響 // 中國化學外加劑及礦物外加劑研究與應用新進展2016年科隆杯優秀論文匯編. 青島, 2016: 186
      [27] Cao G S, Tong L, Hu Y, et al. Optimization of flocculant dosage by Zeta potential of the particles in sewage. J Daqing Petroleum Inst, 2009, 33(1): 17

      曹廣勝, 佟樂, 胡儀, 等. 基于污水懸浮顆粒Zeta電位的絮凝劑用量優化. 大慶石油學院學報, 2009, 33(1):17
      [28] Wu J Z, Beliakov G. Nonadditive robust ordinal regression with nonadditivity index and multiple goal linear programming. Int J Intell Syst, 2019, 34(7): 1732 doi: 10.1002/int.22119
      [29] Sadeghi H, Moslemi F. A multiple objective programming approach to linear bilevel multi-follower programming. AIMS Math, 2019, 4(3): 763 doi: 10.3934/math.2019.3.763
    • 加載中
    圖(11) / 表(4)
    計量
    • 文章訪問數:  555
    • HTML全文瀏覽量:  223
    • PDF下載量:  36
    • 被引次數: 0
    出版歷程
    • 收稿日期:  2021-12-18
    • 網絡出版日期:  2022-05-11
    • 刊出日期:  2022-07-01

    目錄

      /

      返回文章
      返回