• 《工程索引》(EI)刊源期刊
    • 中文核心期刊
    • 中國科技論文統計源期刊
    • 中國科學引文數據庫來源期刊

    留言板

    尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

    姓名
    郵箱
    手機號碼
    標題
    留言內容
    驗證碼

    基于數據驅動的轉爐二吹階段鋼水溫度動態預測模型

    谷茂強 徐安軍 劉旋 王慧賢

    谷茂強, 徐安軍, 劉旋, 王慧賢. 基于數據驅動的轉爐二吹階段鋼水溫度動態預測模型[J]. 工程科學學報, 2022, 44(9): 1595-1606. doi: 10.13374/j.issn2095-9389.2022.01.05.002
    引用本文: 谷茂強, 徐安軍, 劉旋, 王慧賢. 基于數據驅動的轉爐二吹階段鋼水溫度動態預測模型[J]. 工程科學學報, 2022, 44(9): 1595-1606. doi: 10.13374/j.issn2095-9389.2022.01.05.002
    GU Mao-qiang, XU An-jun, LIU Xuan, WANG Hui-xian. Dynamic, data-driven prediction model of molten steel temperature in the second blowing stage of a converter[J]. Chinese Journal of Engineering, 2022, 44(9): 1595-1606. doi: 10.13374/j.issn2095-9389.2022.01.05.002
    Citation: GU Mao-qiang, XU An-jun, LIU Xuan, WANG Hui-xian. Dynamic, data-driven prediction model of molten steel temperature in the second blowing stage of a converter[J]. Chinese Journal of Engineering, 2022, 44(9): 1595-1606. doi: 10.13374/j.issn2095-9389.2022.01.05.002

    基于數據驅動的轉爐二吹階段鋼水溫度動態預測模型

    doi: 10.13374/j.issn2095-9389.2022.01.05.002
    基金項目: 國家重點研發計劃資助項目(2017YF0304001)
    詳細信息
      通訊作者:

      E-mail:anjunxu@126.com

    • 中圖分類號: TF724.1

    Dynamic, data-driven prediction model of molten steel temperature in the second blowing stage of a converter

    More Information
    • 摘要: 轉爐鋼水溫度是轉爐終點控制的工藝參數之一,精確的鋼水溫度預測對轉爐終點控制具有重要的指導意義。然而,以往的大多數轉爐終點預測模型屬于靜態模型,只能夠實現對轉爐吹煉終點鋼水溫度的預測,無法實現動態預測,導致模型的作用有限。針對該問題,提出了一種基于數據驅動的轉爐二吹階段鋼水溫度動態預測模型。模型先通過新案例主吹階段的工藝參數,基于案例推理算法找到歷史案例庫中相似案例。再利用相似案例的二吹階段工藝參數并基于長短期記憶網絡(Long short-term memory,LSTM)算法訓練工藝參數與鋼水溫度的變化關系。然后利用訓練好的LSTM模型,計算新案例二吹階段的鋼水溫度變化。最后,利用某鋼廠實際生產數據,研究了不同重用案例個數及神經元個數對模型預測精度的影響,實驗結果表明:模型在重用案例個數為4,神經元個數為10時模型的預測精度最高,此時模型對鋼水溫度的預測誤差在[?5 ℃, 5 ℃]、[?10 ℃,10 ℃]和[?15 ℃,15 ℃]的命中率分別達到40.33%、68.92%和88.33%,模型的性能高于傳統二次方模型和三次方模型。

       

    • 圖  1  轉爐煉鋼冶煉過程

      Figure  1.  Process for converter steelmaking

      圖  2  轉爐煉鋼的工藝參數

      Figure  2.  Technical parameters for converter steelmaking

      圖  3  案例推理算法流程圖

      Figure  3.  Process of the case-based reasoning (CBR) model

      圖  4  LSTM記憶塊結構

      Figure  4.  Memory block structure of LSTM

      圖  5  模型流程圖

      Figure  5.  Process of the model

      圖  6  相似案例檢索流程圖

      Figure  6.  Process of similar case retrieval

      圖  7  模型訓練流程圖

      Figure  7.  Process of model training

      圖  8  模型驗證流程圖

      Figure  8.  Process of model validation

      圖  9  相似案例對應的二吹階段工藝參數圖.(a)爐次2;(b)爐次3;(c)爐次4;(d)爐次5

      Figure  9.  Process parameters for the second blowing stage of similar cases: (a) Heat 2; (b) Heat 3; (c) Heat 4; (d) Heat 5

      圖  10  模型訓練誤差變化曲線

      Figure  10.  Training error curve of each model

      圖  11  鋼水溫度動態預測模型的預測結果

      Figure  11.  Prediction result for the application example

      圖  12  CBR_LSTM模型預測結果. (a) k=5; (b) k=10; (c) k=15; (d) k=20

      Figure  12.  Prediction result of the model CBR_LSTM: (a) k = 5; (b) k = 10; (c) k = 15; (d) k = 20

      圖  13  案例個數對預測精度的影響

      Figure  13.  Influence of hyperparameter n on the prediction accuracy

      表  1  轉爐主吹階段單值型工藝參數統計結果

      Table  1.   Statistical results of single-value type process parameters in main blowing stage of converter

      Influence factorsSymbolsMaximumMinimumMeanStandard deviation
      Carbon content of hot metal/%X14.50163.94964.22730.0992
      Silicon content of hot metal/%X20.496060.031890.26440.08119
      Manganese content of hot metal/%X30.143470.071550.108110.01291
      Phosphorus content of hot metal/%X40.079530.05270.0657210.004375
      Temperature of hot metal/℃X5144112671360.331.3
      Weight of hot metal/tX6282263272.573.39
      Weight of scrap/tX7714060.2626.207
      Amount of lime/tX820.6052.0639.48653.6389
      Amount of dolomite/tX97.9912.0014.72441.0092
      Oxygen amount of main blowing stage/m3X10150221129812931560
      TSC[C]/%X110.5590.0380.244370.10683
      TSC[T]/℃X12169015451617.324.9
      TSO[C]/%Y10.0660.0180.042250.00782
      TSO[T]/℃Y2170516201663.4233.71
      下載: 導出CSV

      表  2  轉爐二吹階段工藝參數統計結果

      Table  2.   Statistical results of process parameters in the second blowing stage of conventer

      Influence factorsMaximumMinimumMaximum length of time-series/minMinimum length of time-series/min
      Oxygen flow66282 m3·h?129998 m3·h?121
      Lance position5553 mm1598 mm21
      Argon flow2155 m3·h?1465 m3·h?121
      下載: 導出CSV

      表  3  相似案例檢索結果

      Table  3.   Similarity between the new case and similar cases

      Heat No.X1/%X2/%X3/%X4/%X5/℃X6/tX7/tX8/tX9/tX10/ m3X11/%X12/℃Similarity
      14.133170.148990.091420.061221377273635.9815.276128840.2411584
      24.108740.096970.089690.062421376275634.2194.755126590.207157794.25%
      34.052880.135920.09250.06051394273615.534.545128780.226160393.18%
      44.046470.152760.094480.059641381272656.0814.906133730.299159791.95%
      54.13070.147090.09270.056531354273656.0744.596131010.303158691.41%
      下載: 導出CSV

      表  4  模型擬合結果

      Table  4.   Model fitting results

      ModelFitting formulaR2
      Quadratic model$T = - {10^{ - 5} } \cdot {x^2} + 0.03 \cdot x + {\rm{TS}}{{\rm{C}}_{[{\rm{T}}]} }$0.994
      Cubic model$T = 5 \cdot {10^{ - 9} } \cdot {x^3} - 2 \cdot {10^{ - 5} } \cdot {x^2} + {\rm{TS}}{{\rm{C}}_{[{\rm{T}}]} }$0.9987
      下載: 導出CSV

      表  5  各模型預測精度對比

      Table  5.   Prediction accuracies of each model

      ModelMAERMSEHit rate/%
      Quadratic model10.7413.6176.50
      Cubic model9.3711.6980.67
      CBR_LSTM7.549.3888.33
      下載: 導出CSV
      中文字幕在线观看
    • [1] Gao F, Bao Y P, Wang M, et al. Prediction model of end-point phosphorus content of converter based on FA-ELM. Iron Steel, 2020, 55(12): 24

      高放, 包燕平, 王敏, 等. 基于FA-ELM的轉爐終點磷含量預測模型. 鋼鐵, 2020, 55(12):24
      [2] Feng K, Xu A J, He D F, et al. An improved CBR model based on mechanistic model similarity for predicting end phosphorus content in dephosphorization converter. Steel Res Int, 2018, 89(6): 1800063 doi: 10.1002/srin.201800063
      [3] Gu M Q, Xu A J, Yuan F, et al. An improved CBR model using time-series data for predicting the end-point of a converter. ISIJ Int, 2021, 61(10): 2564 doi: 10.2355/isijinternational.ISIJINT-2020-687
      [4] Gao C, Shen M G, Liu X, et al. End-point static control of basic oxygen furnace (BOF) steelmaking based on wavelet transform weighted twin support vector regression. Complexity, 2019, 2019: 7408725
      [5] Sala D A, Jalalvand A, Van Yperen-De Deyne A, et al. Multivariate time series for data-driven endpoint prediction in the basic oxygen furnace // 2018 17th IEEE International Conference on Machine Learning and Applications (ICMLA). Orlando, 2018: 1419
      [6] He F, Zhang L Y. Prediction model of end-point phosphorus content in BOF steelmaking process based on PCA and BP neural network. J Process Control, 2018, 66: 51 doi: 10.1016/j.jprocont.2018.03.005
      [7] Cheng J, Wang J. Endpoint prediction method for steelmaking based on multi-task learning. J Comput Appl, 2017, 37(3): 889 doi: 10.11772/j.issn.1001-9081.2017.03.889

      程進, 王堅. 基于多任務學習的煉鋼終點預測方法. 計算機應用, 2017, 37(3):889 doi: 10.11772/j.issn.1001-9081.2017.03.889
      [8] Yang X M, Zhao Y, Zhong L C, et al. Endpoint prediction of converter steelmaking based on XGBoost algorithm. Steelmaking, 2021, 37(6): 1

      楊曉猛, 趙陽, 鐘良才, 等. 基于XGBoost算法的轉爐吹煉終點預報. 煉鋼, 2021, 37(6):1
      [9] Xuan M T, Li J J, Wang N, et al. Endpoint prediction of basic oxygen furnace steelmaking based on FOA-GRNN model. J Mater Metall, 2019, 18(1): 31

      鉉明濤, 李嬌嬌, 王楠, 等. 基于FOA-GRNN模型的轉爐煉鋼終點預報. 材料與冶金學報, 2019, 18(1):31
      [10] Han M, Zhao Y, Yang X L, et al. Endpoint prediction model of basic oxygen furnace steelmaking based on robust relevance-vector-machines. Control Theory Appl, 2011, 28(3): 343

      韓敏, 趙耀, 楊溪林, 等. 基于魯棒相關向量機的轉爐煉鋼終點預報模型. 控制理論與應用, 2011, 28(3):343
      [11] Liu C, Han M, Wang X Z. Endpoint prediction model for basic oxygen furnace steelmaking based on membrane algorithm evolving extreme learning machine. J Dalian Univ Technol, 2014, 54(1): 124 doi: 10.7511/dllgxb201401019

      劉闖, 韓敏, 王心哲. 基于膜算法進化極限學習機的氧氣轉爐煉鋼終點預報模型. 大連理工大學學報, 2014, 54(1):124 doi: 10.7511/dllgxb201401019
      [12] Yan L T, Li M, Yang D Y. Prediction of carbon content at end point based on GA-KPLSR in converters. Control Eng China, 2017, 24(5): 923 doi: 10.14107/j.cnki.kzgc.150355

      嚴良濤, 李鳴, 楊大勇. 基于GA-KPLSR的轉爐終點碳含量的預測研究. 控制工程, 2017, 24(5):923 doi: 10.14107/j.cnki.kzgc.150355
      [13] Zhang C J, Han Y, He S Y, et al. Furnace mouse flame spectrum driven steelmaking end control. Chin J Sci Instrum, 2018, 39(1): 24

      張彩軍, 韓陽, 何世宇, 等. 爐口火焰光譜驅動的煉鋼終點控制. 儀器儀表學報, 2018, 39(1):24
      [14] Liu C, Liu H. Carbon content prediction of converter steelmaking end-point based on improved MTBCD flame image feature extraction. Comput Integr Manuf Syst, http://kns.cnki.net/kcms/detail/11.5946.TP.20210428.1806.020.html

      李超, 劉輝. 改進MTBCD火焰圖像特征提取的轉爐煉鋼終點碳含量預測. 計算機集成制造系統,http://kns.cnki.net/kcms/detail/11.5946.TP.20210428.1806.020.html
      [15] Zhu W Q, Zhou M C, Zhao Q, et al. End-point prediction of BOF steelmaking based on flame spectral feature selection using WCARS-ISPA. Spectrosc Spectr Anal, 2021, 41(8): 2332

      朱雯瓊, 周木春, 趙琦, 等. WCARS-ISPA 火焰光譜特征選擇的轉爐煉鋼終點預測. 光譜學與光譜分析, 2021, 41(8):2332
      [16] Yue F, Bao Y P, Cui H, et al. Sub-lance control-based predication model for BOF end-point. Steelmaking, 2009, 25(1): 38

      岳峰, 包燕平, 崔衡, 等. 基于副槍控制的轉爐終點預測模型. 煉鋼, 2009, 25(1):38
      [17] Wang X Z, Xing J, Dong J, et al. Data driven based endpoint carbon content real time prediction for BOF steelmaking // 2017 36th Chinese Control Conference (CCC). Dalian, 2017: 9708
      [18] Hu Z G, He P, Liu L, et al. Continuous determination of bath carbon in BOF by off-gas analysis. Res Iron Steel, 2003, 31(3): 12 doi: 10.3969/j.issn.1001-1447.2003.03.004

      胡志剛, 何平, 劉瀏, 等. 利用爐氣分析進行轉爐鋼水連續定碳. 鋼鐵研究, 2003, 31(3):12 doi: 10.3969/j.issn.1001-1447.2003.03.004
      [19] Hu Z G, Liu L, He P, et al. Continuous determination of bath temperature in BOF by off-gas analysis // Proceedings of 2003 China Iron & Steel Annual Meeting(3). Beijing, 2003: 613

      胡志剛, 劉瀏, 何平, 等. 利用爐氣分析進行鋼水連續定溫 // 中國金屬學會2003中國鋼鐵年會論文集(3). 北京, 2003: 613
      [20] Liu K, Liu L, He P, et al. A new algorithm of endpoint carbon content of BOF based on of off-gas analysis. Steelmaking, 2009, 25(1): 33

      劉錕, 劉瀏, 何平, 等. 基于煙氣分析轉爐終點碳含量控制的新算法. 煉鋼, 2009, 25(1):33
      [21] Wang X H, Li J Z, Liu F G. Technological progress of BOF steelmaking in period of development mode transition. Steelmaking, 2017, 33(1): 1

      王新華, 李金柱, 劉鳳剛. 轉型發展形勢下的轉爐煉鋼科技進步. 煉鋼, 2017, 33(1):1
      [22] Liao D S, Sun S, Waterfall S, et al. Integrated KOBM steelmaking process control // Proceedings of the 6th International Congress on the Science and Technology of Steelmaking (Ⅰ). Beijing, 2015: 107
      [23] Lin W H, Jiao S Q, Sun J K, et al. Modified exponential model for carbon prediction in the end blowing stage of basic oxygen furnace converter. Chin J Eng, 2020, 42(7): 854

      林文輝, 焦樹強, 孫建坤, 等. 轉爐吹煉后期碳含量預報的改進指數模型. 工程科學學報, 2020, 42(7):854
      [24] Li N, Lin W H, Cao L L, et al. Carbon prediction model for basic oxygen furnace off-gas analysis based on bath mixing degree. Chin J Eng, 2018, 40(10): 1244

      李南, 林文輝, 曹玲玲, 等. 基于熔池混勻度的轉爐煙氣分析定碳模型. 工程科學學報, 2018, 40(10):1244
      [25] Gu M Q, Xu A J, Wang H B, et al. Real-time dynamic carbon content prediction model for second blowing stage in BOF based on CBR and LSTM. Processes, 2021, 9(11): 1987 doi: 10.3390/pr9111987
      [26] Hou Y M, Xu C Y. Review of case-based reasoning. J Yanshan Univ Philos Soc Sci Ed, 2011, 12(4): 102 doi: 10.15883/j.13-1277/c.2011.04.026

      侯玉梅, 許成媛. 基于案例推理法研究綜述. 燕山大學學報(哲學社會科學版), 2011, 12(4):102 doi: 10.15883/j.13-1277/c.2011.04.026
    • 加載中
    圖(13) / 表(5)
    計量
    • 文章訪問數:  2373
    • HTML全文瀏覽量:  210
    • PDF下載量:  90
    • 被引次數: 0
    出版歷程
    • 收稿日期:  2022-01-05
    • 網絡出版日期:  2022-03-07
    • 刊出日期:  2022-09-01

    目錄

      /

      返回文章
      返回