• 《工程索引》(EI)刊源期刊
    • 中文核心期刊
    • 中國科技論文統計源期刊
    • 中國科學引文數據庫來源期刊

    留言板

    尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

    姓名
    郵箱
    手機號碼
    標題
    留言內容
    驗證碼

    垃圾焚燒飛灰熔融無害化及資源化研究現狀

    張俊杰 劉波 沈漢林 溫泉 劉穎 張柏林 張深根

    張俊杰, 劉波, 沈漢林, 溫泉, 劉穎, 張柏林, 張深根. 垃圾焚燒飛灰熔融無害化及資源化研究現狀[J]. 工程科學學報, 2022, 44(11): 1909-1916. doi: 10.13374/j.issn2095-9389.2022.04.20.006
    引用本文: 張俊杰, 劉波, 沈漢林, 溫泉, 劉穎, 張柏林, 張深根. 垃圾焚燒飛灰熔融無害化及資源化研究現狀[J]. 工程科學學報, 2022, 44(11): 1909-1916. doi: 10.13374/j.issn2095-9389.2022.04.20.006
    ZHANG Jun-jie, LIU Bo, SHEN Han-lin, WEN Quan, LIU Ying, ZHANG Bo-lin, ZHANG Shen-gen. Current state of the harmless melting and recycling of municipal solid waste incinerator fly ash[J]. Chinese Journal of Engineering, 2022, 44(11): 1909-1916. doi: 10.13374/j.issn2095-9389.2022.04.20.006
    Citation: ZHANG Jun-jie, LIU Bo, SHEN Han-lin, WEN Quan, LIU Ying, ZHANG Bo-lin, ZHANG Shen-gen. Current state of the harmless melting and recycling of municipal solid waste incinerator fly ash[J]. Chinese Journal of Engineering, 2022, 44(11): 1909-1916. doi: 10.13374/j.issn2095-9389.2022.04.20.006

    垃圾焚燒飛灰熔融無害化及資源化研究現狀

    doi: 10.13374/j.issn2095-9389.2022.04.20.006
    基金項目: 國家重點研發計劃資助項目(2021YFC1910504, 2019YFC1907101); 廣東省基礎與應用基礎研究基金資助項目(2021A1515110998); 北京科技大學順德研究生院博士后科研經費資助項目 (2022BH004);佛山市人民政府科技創新專項資金資助項目(BK22BE001)
    詳細信息
      通訊作者:

      E-mail: zhangshengen@mater.ustb.edu.cn

    • 中圖分類號: X799.3

    Current state of the harmless melting and recycling of municipal solid waste incinerator fly ash

    More Information
    • 摘要: 垃圾焚燒飛灰因含二噁英和重金屬被列為危險廢物(HW18),存在環境污染風險,2020年全國生活垃圾焚燒量高達14607.6萬噸,以焚燒量5%(質量分數)計算,全國垃圾焚燒飛灰的產生量為730.4萬噸。目前垃圾焚燒飛灰以固化填埋為主,占用土地資源,且堆存量與處理量嚴重失衡,無法實現資源化,因此垃圾焚燒飛灰的無害化及資源化已成為綠色發展的瓶頸課題。本文詳細介紹了垃圾焚燒飛灰經熔融無害化及資源化的研究現狀,闡述了熔融處理垃圾焚燒飛灰的重金屬固化、二噁英降解機理,結合熔融形成的玻璃渣分析了制備微晶玻璃、泡沫微晶玻璃、膠凝材料的資源化技術,并指出現有玻璃化雖能固化重金屬,但在后續資源化以及產品服役過程,重金屬的遷移規律、浸出性需要進一步研究,為垃圾焚燒飛灰的綜合利用提供了參考。

       

    • 圖  1  2009~2020年我國生活垃圾清運量及增速趨勢

      Figure  1.  Growth trend of domestic waste removal in China from 2009 to 2020

      圖  2  飛灰熔融后制備的泡沫微晶玻璃宏觀(a)及微觀(b)形貌[48]

      Figure  2.  Macromorphology (a) and micromorphology (b) of glass–ceramic foams prepared by melting MSWI fly ash[48]

      表  1  飛灰重金屬質量濃度及浸出毒性[14]

      Table  1.   Concentration and leaching toxicity of heavy metals in MSWI fly ash[14]

      Heavy metal elementsConcentration/
      (mg·L?1)
      Standard for leaching toxicity of MSWI
      in China/
      (mg·L?1)
      Criteria for landfills for nonhazardous waste in Europe/
      (mg·L?1)
      Zn3269.0100.0050.00
      Pb1515.00.2510.0
      Cu563.240.0050.0
      Cd36.70.151.0
      Cr157.04.5010.0
      Hg35.80.050.2
      下載: 導出CSV
      中文字幕在线观看
    • [1] National Bureau of statistics of the people's Republic of China. China Statistical Yearbook 2021. Beijing: China Statistics Press, 2021

      中華人民共和國國家統計局. 中國統計年鑒2021. 北京: 中國統計出版社, 2021
      [2] Wu H, Liu H B, Tian S L, et al. Current situation for utilization and disposal and environmental management of fly ash from municipal solid waste incineration. J Environ Eng Technol, 2021(5): 1034 doi: 10.12153/j.issn.1674-991X.20210083

      吳昊, 劉宏博, 田書磊, 等. 城市生活垃圾焚燒飛灰利用處置現狀及環境管理. 環境工程技術學報, 2021(5):1034 doi: 10.12153/j.issn.1674-991X.20210083
      [3] Ma W C, Shi W B, Shi Y J, et al. Plasma vitrification and heavy metals solidification of MSW and sewage sludge incineration fly ash. J Hazard Mater, 2021, 408: 124809 doi: 10.1016/j.jhazmat.2020.124809
      [4] Jiang X G, Chen Q, Zhao X L, et al. A review on hydrothermal treatment for stabilization of heavy metals in fly ash from municipal solid waste incineration. Chem Ind Eng Prog, 2021, 40(8): 4473

      蔣旭光, 陳錢, 趙曉利, 等. 水熱法穩定垃圾焚燒飛灰中重金屬研究進展. 化工進展, 2021, 40(8):4473
      [5] Kang D, Son J, Yoo Y, et al. Heavy-metal reduction and solidification in municipal solid waste incineration (MSWI) fly ash using water, NaOH, KOH, and NH4OH in combination with CO2 uptake procedure. Chem Eng J, 2020, 380: 122534 doi: 10.1016/j.cej.2019.122534
      [6] Li W H, Ma Z Y, Huang Q X, et al. Distribution and leaching characteristics of heavy metals in a hazardous waste incinerator. Fuel, 2018, 233: 427 doi: 10.1016/j.fuel.2018.06.041
      [7] Zhou J Z, Wu S M, Pan Y, et al. Enrichment of heavy metals in fine particles of municipal solid waste incinerator (MSWI) fly ash and associated health risk. Waste Manag, 2015, 43: 239 doi: 10.1016/j.wasman.2015.06.026
      [8] Bernasconi D, Caviglia C, Destefanis E, et al. Influence of speciation distribution and particle size on heavy metal leaching from MSWI fly ash. Waste Manag, 2022, 138: 318 doi: 10.1016/j.wasman.2021.12.008
      [9] Cai P T, Fu J Y, Zhan M X, et al. Formation mechanism and influencing factors of dioxins during incineration of mineralized refuse. J Clean Prod, 2022, 342: 130762 doi: 10.1016/j.jclepro.2022.130762
      [10] Mao L Q, Guo H J, Zhang W Y. Addition of waste glass for improving the immobilization of heavy metals during the use of electroplating sludge in the production of clay bricks. Constr Build Mater, 2018, 163: 875 doi: 10.1016/j.conbuildmat.2017.12.177
      [11] Zhang J J, Liu B, Zhang S G. A review of glass ceramic foams prepared from solid wastes: Processing, heavy-metal solidification and volatilization, applications. Sci Total Environ, 2021, 781: 146727 doi: 10.1016/j.scitotenv.2021.146727
      [12] Gao J, Dong C Q, Zhao Y, et al. Vitrification of municipal solid waste incineration fly ash with B2O3 as a fluxing agent. Waste Manag, 2020, 102: 932 doi: 10.1016/j.wasman.2019.12.012
      [13] Morsi R M M, Basha M A F, Morsi M M. Synthesis and physical characterization of amorphous silicates in the system SiO2-Na2O-RO (R = Zn, Pb or Cd). J Non Cryst Solids, 2016, 439: 57 doi: 10.1016/j.jnoncrysol.2016.02.018
      [14] Huang B B, Gan M, Ji Z Y, et al. Recent progress on the thermal treatment and resource utilization technologies of municipal waste incineration fly ash: A review. Process Saf Environ Prot, 2022, 159: 547 doi: 10.1016/j.psep.2022.01.018
      [15] Zhang J J, Zhang S G, Liu B. Degradation technologies and mechanisms of dioxins in municipal solid waste incineration fly ash: A review. J Clean Prod, 2020, 250: 119507 doi: 10.1016/j.jclepro.2019.119507
      [16] Lin X Q, Chen Z L, Lu S Y, et al. Emission characteristics of polychlorinated dibenzo-p-dioxins and dibenzofurans from the co-combustion of municipal solid waste in a lab-scale drop-tube furnace. Energy Fuels, 2018, 32(4): 5396 doi: 10.1021/acs.energyfuels.8b00408
      [17] Ji Z Y, Huang B B, Gan M, et al. Dioxins control as co-processing water-washed municipal solid waste incineration fly ash in iron ore sintering process. J Hazard Mater, 2022, 423: 127138 doi: 10.1016/j.jhazmat.2021.127138
      [18] Katou K, Asou T, Kurauchi Y, et al. Melting municipal solid waste incineration residue by plasma melting furnace with a graphite electrode. Thin Solid Films, 2001, 386(2): 183 doi: 10.1016/S0040-6090(00)01640-0
      [19] Zhang S, Chen Z L, Lin X Q, et al. Kinetics and fusion characteristics of municipal solid waste incineration fly ash during thermal treatment. Fuel, 2020, 279: 118410 doi: 10.1016/j.fuel.2020.118410
      [20] Wong G, Gan M, Fan X H, et al. Co-disposal of municipal solid waste incineration fly ash and bottom slag: A novel method of low temperature melting treatment. J Hazard Mater, 2021, 408: 124438 doi: 10.1016/j.jhazmat.2020.124438
      [21] Chen Z L, Lin X Q, Zhang S, et al. Thermal cotreatment of municipal solid waste incineration fly ash with sewage sludge for PCDD/Fs decomposition and reformation suppression. J Hazard Mater, 2021, 416: 126216 doi: 10.1016/j.jhazmat.2021.126216
      [22] Lin X Q, Mao T Y, Chen Z L, et al. Thermal cotreatment of municipal solid waste incineration fly ash with sewage sludge: Phases transformation, kinetics and fusion characteristics, and heavy metals solidification. J Clean Prod, 2021, 317: 128429 doi: 10.1016/j.jclepro.2021.128429
      [23] Kim K, Kim K, Kim M. Characterization of municipal solid-waste incinerator fly ash, vitrified using only end-waste glass. J Clean Prod, 2021, 318: 128557 doi: 10.1016/j.jclepro.2021.128557
      [24] Kim M, Kim H G, Kim S, et al. Leaching behaviors and mechanisms of vitrified forms for the low-level radioactive solid wastes. J Hazard Mater, 2020, 384: 121296 doi: 10.1016/j.jhazmat.2019.121296
      [25] Yang J, Liu B, Zhang S G, et al. Glass-ceramics one-step crystallization accomplished by building Ca2+ and Mg2+ fast diffusion layer around diopside crystal. J Alloys Compd, 2016, 688: 709 doi: 10.1016/j.jallcom.2016.07.027
      [26] Fan W D, Liu B, Luo X, et al. Production of glass–ceramics using Municipal solid waste incineration fly ash. Rare Met, 2019, 38(3): 245 doi: 10.1007/s12598-017-0976-8
      [27] Fan W D. Manufacture of Glass-Ceramic Made from Municipal Solid Waste Incineration Fly Ash and the Solidification Mechanism of Cr [Dissertation]. Beijing: University of Science and Technology Beijing, 2018

      范文迪. 垃圾焚燒飛灰微晶玻璃化及Cr固化機理[學位論文]. 北京: 北京科技大學, 2018
      [28] Zhao S Z, Liu B, Ding Y J, et al. Study on glass-ceramics made from MSWI fly ash, pickling sludge and waste glass by one-step process. J Clean Prod, 2020, 271: 122674 doi: 10.1016/j.jclepro.2020.122674
      [29] Zhao S Z, Zhang X Y, Liu B, et al. Preparation of glass-ceramics from high-chlorine MSWI fly ash by one-step process. Rare Met, 2021, 40(11): 3316 doi: 10.1007/s12598-021-01770-9
      [30] Vu D H, Wang K S, Chen J H, et al. Glass-ceramic from mixtures of bottom ash and fly ash. Waste Manag, 2012, 32(12): 2306 doi: 10.1016/j.wasman.2012.05.040
      [31] Li B Q, Guo Y P, Fang H S, et al. Effect of crystallization temperature on crystallization and properties of CaO-Al2O3-MgO-SiO2 glass-ceramics from fly ash and waste panel glass. J Ceram, 2018, 39(4): 443

      李保慶, 郭艷平, 方紅生, 等. 晶化溫度對飛灰/廢屏玻璃協同制備CaO-Al2O3-MgO-SiO2系微晶玻璃析晶及性能的影響. 陶瓷學報, 2018, 39(4):443
      [32] Li B Q, Guo Y P, Dang H F. Effect of MgO on crystallization and properties of glass ceramics from fly ash and waste glass. Multipurp Util Miner Resour, 2020(1): 135 doi: 10.3969/j.issn.1000-6532.2020.01.028

      李保慶, 郭艷平, 黨海峰. MgO對飛灰屏玻璃協同制備微晶玻璃析晶及性能的影響. 礦產綜合利用, 2020(1):135 doi: 10.3969/j.issn.1000-6532.2020.01.028
      [33] Elsayed H, Romero A R, Picicco M, et al. Glass-ceramic foams and reticulated scaffolds by sinter-crystallization of a hardystonite glass. J Non Cryst Solids, 2020, 528: 119744 doi: 10.1016/j.jnoncrysol.2019.119744
      [34] Zhang J J, Zhang X Y, Liu B, et al. Phase evolution and properties of glass ceramic foams prepared by bottom ash, fly ash and pickling sludge. Int J Miner Metall Mater, 2022, 29(3): 563 doi: 10.1007/s12613-020-2219-5
      [35] Sasmal N, Garai M, Karmakar B. Preparation and characterization of novel foamed porous glass-ceramics. Mater Charact, 2015, 103: 90 doi: 10.1016/j.matchar.2015.03.007
      [36] Tarrago M, Garcia-Valles M, Aly M H, et al. Valorization of sludge from a wastewater treatment plant by glass-ceramic production. Ceram Int, 2017, 43(1): 930 doi: 10.1016/j.ceramint.2016.10.083
      [37] Liu T Y, Liu P, Guo X G, et al. Preparation, characterization and discussion of glass ceramic foam material: Analysis of glass phase, fractal dimension and self-foaming mechanism. Mater Chem Phys, 2020, 243: 122614 doi: 10.1016/j.matchemphys.2019.122614
      [38] Si R Z, Dai Q L, Guo S C, et al. Mechanical property, nanopore structure and drying shrinkage of metakaolin-based geopolymer with waste glass powder. J Clean Prod, 2020, 242: 118502 doi: 10.1016/j.jclepro.2019.118502
      [39] Liu B, Yang Q W, Zhang S G. Integrated utilization of municipal solid waste incineration fly ash and bottom ash for preparation of foam glass–ceramics. Rare Met, 2019, 38(10): 914 doi: 10.1007/s12598-019-01314-2
      [40] da Silva R C, Kubaski E T, Tenório-Neto E T, et al. Foam glass using sodium hydroxide as foaming agent: Study on the reaction mechanism in soda-lime glass matrix. J Non Cryst Solids, 2019, 511: 177 doi: 10.1016/j.jnoncrysol.2019.02.003
      [41] Han J S, Li G H, Gao H N, et al. Foaming mechanisms of different foaming agents and their effects on the microstructures of porous magnesia ceramics. J Aust Ceram Soc, 2020, 56(3): 1005 doi: 10.1007/s41779-019-00443-2
      [42] Li J, Zhuang X G, Monfort E, et al. Utilization of coal fly ash from a Chinese power plant for manufacturing highly insulating foam glass: Implications of physical, mechanical properties and environmental features. Constr Build Mater, 2018, 175: 64 doi: 10.1016/j.conbuildmat.2018.04.158
      [43] Fernandes H R, Andreola F, Barbieri L, et al. The use of egg shells to produce Cathode Ray Tube (CRT) glass foams. Ceram Int, 2013, 39(8): 9071 doi: 10.1016/j.ceramint.2013.05.002
      [44] Petersen R R, K?nig J, Yue Y Z. The viscosity window of the silicate glass foam production. J Non Cryst Solids, 2017, 456: 49 doi: 10.1016/j.jnoncrysol.2016.10.041
      [45] Rincón A, Giacomello G, Pasetto M, et al. Novel ‘inorganic gel casting’ process for the manufacturing of glass foams. J Eur Ceram Soc, 2017, 37(5): 2227 doi: 10.1016/j.jeurceramsoc.2017.01.012
      [46] Rincón A, Desideri D, Bernardo E. Functional glass-ceramic foams from ‘inorganic gel casting’ and sintering of glass/slag mixtures. J Clean Prod, 2018, 187: 250 doi: 10.1016/j.jclepro.2018.03.065
      [47] Zhang J J, Liu B, Zhang X Y, et al. A novel approach for preparing glass ceramic foams from MSWI fly ash: Foaming characteristics and hierarchical pore formation mechanism. J Mater Res Technol, 2022, 18: 731 doi: 10.1016/j.jmrt.2022.02.090
      [48] Zhang J J. Preparation and Mechanism of Glass-Ceramic Foams Based on Municipal Solid Waste Incineration Ash [Dissertation]. Beijing: University of Science and Technology Beijing, 2021

      張俊杰. 垃圾焚燒灰渣制備泡沫微晶玻璃工藝及其機理[學位論文]. 北京: 北京科技大學, 2021
      [49] Lin K L, Wang K S, Tzeng B Y, et al. The hydration characteristics and utilization of slag obtained by the vitrification of MSWI fly ash. Waste Manag, 2004, 24(2): 199 doi: 10.1016/S0956-053X(03)00131-4
      [50] Lee T C, Wang W J, Shih P Y. Slag-cement mortar made with cement and slag vitrified from MSWI fly-ash/scrubber-ash and glass frit. Constr Build Mater, 2008, 22(9): 1914 doi: 10.1016/j.conbuildmat.2007.07.030
    • 加載中
    圖(2) / 表(1)
    計量
    • 文章訪問數:  492
    • HTML全文瀏覽量:  743
    • PDF下載量:  110
    • 被引次數: 0
    出版歷程
    • 收稿日期:  2022-04-20
    • 網絡出版日期:  2022-05-17
    • 刊出日期:  2022-11-01

    目錄

      /

      返回文章
      返回