• 《工程索引》(EI)刊源期刊
    • 中文核心期刊
    • 中國科技論文統計源期刊
    • 中國科學引文數據庫來源期刊

    留言板

    尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

    姓名
    郵箱
    手機號碼
    標題
    留言內容
    驗證碼

    化學浸泡作用下熱沖擊花崗巖物理特性與導熱性能演化機制

    潘繼良 郭奇峰 任奮華 張英 武旭

    潘繼良, 郭奇峰, 任奮華, 張英, 武旭. 化學浸泡作用下熱沖擊花崗巖物理特性與導熱性能演化機制[J]. 工程科學學報, 2022, 44(10): 1755-1766. doi: 10.13374/j.issn2095-9389.2022.04.24.001
    引用本文: 潘繼良, 郭奇峰, 任奮華, 張英, 武旭. 化學浸泡作用下熱沖擊花崗巖物理特性與導熱性能演化機制[J]. 工程科學學報, 2022, 44(10): 1755-1766. doi: 10.13374/j.issn2095-9389.2022.04.24.001
    PAN Ji-liang, GUO Qi-feng, REN Fen-hua, ZHANG Ying, WU Xu. Evolution mechanism of the physical properties and thermal conductivity of thermal shock granite under chemical immersion[J]. Chinese Journal of Engineering, 2022, 44(10): 1755-1766. doi: 10.13374/j.issn2095-9389.2022.04.24.001
    Citation: PAN Ji-liang, GUO Qi-feng, REN Fen-hua, ZHANG Ying, WU Xu. Evolution mechanism of the physical properties and thermal conductivity of thermal shock granite under chemical immersion[J]. Chinese Journal of Engineering, 2022, 44(10): 1755-1766. doi: 10.13374/j.issn2095-9389.2022.04.24.001

    化學浸泡作用下熱沖擊花崗巖物理特性與導熱性能演化機制

    doi: 10.13374/j.issn2095-9389.2022.04.24.001
    基金項目: 中國工程院重點咨詢項目(2019-XZ-16);中央高校基本科研業務費專項資金資助項目(FRF-IDRY-20-032)
    詳細信息
      通訊作者:

      E-mail: guoqifeng@ustb.edu.cn

    • 中圖分類號: TU458.2

    Evolution mechanism of the physical properties and thermal conductivity of thermal shock granite under chemical immersion

    More Information
    • 摘要: 為了研究化學浸泡作用下熱沖擊花崗巖物理特性與導熱性能演化特征,對25~600 ℃范圍內不同溫度熱沖擊作用后的花崗巖試件開展了長期的酸性和中性溶液浸泡試驗,結合超聲檢測、核磁共振測試、熱常數分析和掃描電鏡試驗,定量表征了熱化改性花崗巖試件物理參數隨熱沖擊溫度的演化規律,建立了各物理參數之間的內在關聯性,揭示了物理性質變化的微觀機制。研究結果表明:隨著熱沖擊溫度的升高,熱化改性試件的體積逐漸增大,質量和密度逐漸降低,縱波波速呈線性下降,孔隙率呈冪函數遞增,導熱系數和熱擴散系數分別呈指數下降和線性下降;相同熱沖擊溫度下,熱化改性試件的體積增長率、縱波波速和導熱系數由大到小依次為未浸泡>水浸泡>酸浸泡,質量降低率和孔隙率從高到低依次為酸浸泡>水浸泡>未浸泡;孔隙率增大和導熱性能劣化均伴有縱波波速的下降,可通過測量縱波波速對孔隙率和導熱性能進行估測;熱化改性試件的孔隙結構對150~450 ℃范圍內的溫度更為敏感,固體顆粒骨架對450 ℃以上溫度更為敏感,顆粒骨架的劣化又將進一步引起孔隙結構的演化;熱化改性作用引起的微觀孔隙結構發育和物相轉變是導致物理性質變化的本質原因,其中以高溫熱沖擊起主導作用,研究發現300 ℃可作為產生強烈熱沖擊的溫度閾值。

       

    • 圖  1  熱化改性花崗巖試件表面形貌變化特征.(a)未浸泡;(b)蒸餾水浸泡;(c)鹽酸溶液浸泡

      Figure  1.  Change characteristics of the surface morphology of thermal-chemical-modified granite: (a) non-immersion; (b) immersion in distilled water; (c) immersion in HCl solution

      圖  2  熱化改性花崗巖試件體積變化率隨溫度變化規律

      Figure  2.  Variation law of the volume change fraction of thermal-chemical-modified granite with temperature

      圖  3  熱化改性花崗巖試件質量變化率隨溫度變化規律

      Figure  3.  Variation law of the mass change fraction of thermal-chemical-modified granite with temperature

      圖  4  熱化改性花崗巖試件密度變化率隨溫度變化規律

      Figure  4.  Variation law of the density change fraction of thermal-chemical-modified granite with temperature

      圖  5  熱化改性花崗巖試件縱波波速隨溫度變化規律

      Figure  5.  Variation law of the longitudinal wave velocity of thermal-chemical-modified granite with temperature

      圖  6  熱化改性花崗巖試件孔隙率隨溫度變化規律

      Figure  6.  Variation law of the porosity of thermal-chemical-modified granite with temperature

      圖  7  熱化改性花崗巖試件熱物理參數隨溫度變化規律. (a) 導熱系數隨溫度變化; (b) 熱擴散系數隨溫度變化

      Figure  7.  Variation law of the thermal physical parameters of thermal-chemical-modified granite with temperature: (a) thermal conductivity; (b) thermal diffusivity

      圖  8  熱化改性花崗巖試件縱波波速與密度變化率關系

      Figure  8.  Relationship between the longitudinal wave velocity and the density change fraction of thermal-chemical-modified granite

      圖  9  熱化改性花崗巖試件縱波波速與孔隙率關系

      Figure  9.  Relationship between the longitudinal wave velocity and the porosity of thermal-chemical-modified granite

      圖  10  熱化改性花崗巖試件熱物理參數與縱波波速的關系. (a) 導熱系數; (b) 熱擴散系數

      Figure  10.  Relationship between the thermal parameters and the longitudinal wave velocity of thermal-chemical-modified granite: (a) thermal conductivity; (b) thermal diffusivity

      圖  11  熱化改性花崗巖試件的T2譜分布特征. (a)不同浸泡條件;(b)不同熱沖擊溫度

      Figure  11.  T2 spectral distribution characteristics of thermal-chemical-modified granite: (a) different soaking conditions; (b) different thermal shock temperatures

      圖  12  熱化改性花崗巖試件掃描電鏡圖像. (a) N-25; (b) N-600; (c) TW-600; (d) TH-600

      Figure  12.  SEM images of thermal-chemical-modified granite: (a) N-25; (b) N-600; (c) TW-600; (d) TH-600

      表  1  熱化改性花崗巖試件基本物理參數

      Table  1.   Basic physical parameters of thermal-chemical-modified granite

      Specimen
      number
      Heat-treatment
      temperature /
      Soaking
      condition
      Before modification After modification
      D0/mmH0/mmV0/cm3m0/gρ0/(g?cm?3)Da/mmHa/mmVa/cm3ma/gρa/(g?cm?3)
      N-U025Non-immersion49.4099.60190.80503.462.639
      N-U115049.40100.15191.86503.352.624 49.47100.27192.63502.682.610
      N-U230049.90100.20195.86512.002.614 50.00100.35196.94511.132.595
      N-U345049.55100.05192.83504.442.616 49.69100.27194.35503.432.590
      N-U460050.20100.20198.22516.522.606 50.48100.81201.66515.002.554
      TW-U025Distilled water49.20100.10190.21500.292.630 49.20100.09190.15500.082.630
      TW-U115049.10100.10189.44500.512.642 49.16100.20190.09499.652.628
      TW-U230049.10100.20189.63498.282.628 49.18100.32190.50497.122.610
      TW-U345049.30100.20191.18503.942.636 49.42100.37192.39502.212.610
      TW-U460049.20100.20190.40501.942.636 49.54100.71194.02498.952.572
      TH-U025HCl solution49.20100.20190.40500.672.630 49.17100.15190.07499.202.626
      TH-U115049.40100.20191.95506.792.640 49.44100.27192.40504.902.624
      TH-U230049.40100.20191.95506.312.638 49.45100.28192.49504.122.619
      TH-U345049.50100.30192.92506.472.625 49.57100.42193.70503.472.599
      TH-U460049.40100.30192.14506.882.638 49.66100.73195.00500.972.569
      下載: 導出CSV
      中文字幕在线观看
    • [1] Cai M F, Dor J. Chen X S, et al. Development strategy for co-mining of the deep mineral and geothermal resources. Strateg Study CAE, 2021, 23(6): 43

      蔡美峰, 多吉, 陳湘生, 等. 深部礦產和地熱資源共采戰略研究. 中國工程科學, 2021, 23(6):43
      [2] Lin W J, Wang G L, Shao J L, et al. Distribution and exploration of hot dry rock resources in China: Progress and inspiration. Acta Geol Sin, 2021, 95(5): 1366 doi: 10.3969/j.issn.0001-5717.2021.05.004

      藺文靜, 王貴玲, 邵景力, 等. 我國干熱巖資源分布及勘探: 進展與啟示. 地質學報, 2021, 95(5):1366 doi: 10.3969/j.issn.0001-5717.2021.05.004
      [3] Guo Q F, Xi X, Yang S, et al. Technology strategies to achieve carbon peak and carbon neutrality for China’s metal mines. Int J Miner Metall Mater, 2022, 29(4): 626 doi: 10.1007/s12613-021-2374-3
      [4] Kelkar S, WoldeGabriel G, Rehfeldt K. Lessons learned from the pioneering hot dry rock project at Fenton Hill, USA. Geothermics, 2016, 63: 5 doi: 10.1016/j.geothermics.2015.08.008
      [5] Zhang S Q, Wen D G, Xu T F, et al. The U. S. Frontier Observatory for Research in Geothermal Energy project and comparison of typical EGS site exploration status in China and U. S. Earth Sci Front, 2019, 26(2): 321 doi: 10.13745/j.esf.sf.2019.2.9

      張森琦, 文冬光, 許天福, 等. 美國干熱巖“地熱能前沿瞭望臺研究計劃”與中美典型EGS場地勘查現狀對比. 地學前緣, 2019, 26(2):321 doi: 10.13745/j.esf.sf.2019.2.9
      [6] Wu X G, Huang Z W, Cheng Z, et al. Effects of cyclic heating and LN2-cooling on the physical and mechanical properties of granite. Appl Therm Eng, 2019, 156: 99 doi: 10.1016/j.applthermaleng.2019.04.046
      [7] Sha S, Rong G, Chen Z H, et al. Experimental evaluation of physical and mechanical properties of geothermal reservoir rock after different cooling treatments. Rock Mech Rock Eng, 2020, 53(11): 4967 doi: 10.1007/s00603-020-02200-5
      [8] Luo J, Zhu Y Q, Guo Q H, et al. Chemical stimulation on the hydraulic properties of artificially fractured granite for enhanced geothermal system. Energy, 2018, 142: 754 doi: 10.1016/j.energy.2017.10.086
      [9] Norbeck J H, McClure M W, Horne R N. Field observations at the Fenton Hill enhanced geothermal system test site support mixed-mechanism stimulation. Geothermics, 2018, 74: 135 doi: 10.1016/j.geothermics.2018.03.003
      [10] Liu H J, Shi Y K, Fang Z M, et al. Seepage characteristics of thermally and chemically treated Mesozoic granite from geothermal region of Liaodong Peninsula. Environ Earth Sci, 2021, 80(17): 1
      [11] Zimmermann G, Bl?cher G, Reinicke A, et al. Rock specific hydraulic fracturing and matrix acidizing to enhance a geothermal system-Concepts and field results. Tectonophysics, 2011, 503(1-2): 146 doi: 10.1016/j.tecto.2010.09.026
      [12] Portier S, Vuataz F D, Nami P, et al. Chemical stimulation techniques for geothermal wells: Experiments on the three-well EGS system at Soultz-sous-Forêts, France. Geothermics, 2009, 38(4): 349 doi: 10.1016/j.geothermics.2009.07.001
      [13] Esteban L, Pimienta L, Sarout J, et al. Study cases of thermal conductivity prediction from P-wave velocity and porosity. Geothermics, 2015, 53: 255 doi: 10.1016/j.geothermics.2014.06.003
      [14] Liu S, Xu J Y. An experimental study on the physico-mechanical properties of two post-high-temperature rocks. Eng Geol, 2015, 185: 63 doi: 10.1016/j.enggeo.2014.11.013
      [15] Hu J J, Xie H P, Sun Q, et al. Changes in the thermodynamic properties of alkaline granite after cyclic quenching following high temperature action. Int J Min Sci Technol, 2021, 31(5): 843 doi: 10.1016/j.ijmst.2021.07.010
      [16] Wu X H, Cai M F, Ren F H, et al. Evolutions of P-wave velocity and thermal conductivity of granite under different thermal treatments. Chin J Rock Mech Eng, 2022, 41(3): 457 doi: 10.13722/j.cnki.jrme.2021.0532

      吳星輝, 蔡美峰, 任奮華, 等. 不同熱處理作用下花崗巖縱波波速和導熱能力的演化規律分析. 巖石力學與工程學報, 2022, 41(3):457 doi: 10.13722/j.cnki.jrme.2021.0532
      [17] Pan J L, Cai M F, Li P, et al. A damage constitutive model of rock-like materials containing a single crack under the action of chemical corrosion and uniaxial compression. J Central South Univ, 2022, 29(2): 486 doi: 10.1007/s11771-022-4949-1
      [18] Zhang W Q, Sun Q, Hao S Q, et al. Experimental study on the variation of physical and mechanical properties of rock after high temperature treatment. Appl Therm Eng, 2016, 98: 1297 doi: 10.1016/j.applthermaleng.2016.01.010
      [19] Wang F, Konietzky H. Thermo-mechanical properties of granite at elevated temperatures and numerical simulation of thermal cracking. Rock Mech Rock Eng, 2019, 52(10): 3737 doi: 10.1007/s00603-019-01837-1
      [20] Farquharson J I, Kushnir A R L, Wild B, et al. Physical property evolution of granite during experimental chemical stimulation. Geotherm Energy, 2020, 8(1): 14 doi: 10.1186/s40517-020-00168-7
      [21] Huang Z, Zeng W, Gu Q X, et al. Investigations of variations in physical and mechanical properties of granite, sandstone, and marble after temperature and acid solution treatments. Constr Build Mater, 2021, 307: 124943 doi: 10.1016/j.conbuildmat.2021.124943
      [22] Li Z, Chen Y L, Wang S R, et al. Experimental research on mechanical properties of sandstone after chemical corrosion and high temperature exposure. J Univ Shanghai Sci Technol, 2019, 41(3): 244 doi: 10.13255/j.cnki.jusst.2019.03.006

      李哲, 陳有亮, 王蘇然, 等. 化學溶蝕及高溫作用下砂巖力學特性的試驗研究. 上海理工大學學報, 2019, 41(3):244 doi: 10.13255/j.cnki.jusst.2019.03.006
      [23] Li Z, Chen Y L, Wang S R, et al. Experimental research on mechanical properties of sandstone in chemical corrosion under high or low temperature action. Ind Constr, 2018, 48(8): 103 doi: 10.13204/j.gyjz201808018

      李哲, 陳有亮, 王蘇然, 等. 經化學溶蝕并高低溫作用后砂巖的力學特性試驗研究. 工業建筑, 2018, 48(8):103 doi: 10.13204/j.gyjz201808018
      [24] Liu M L, Zhuang Y Q, Zhou C, et al. Application of chemical stimulation technology in enhanced geothermal system: Theory, practice and expectation. J Earth Sci Environ, 2016, 38(2): 267 doi: 10.3969/j.issn.1672-6561.2016.02.014

      劉明亮, 莊亞芹, 周超, 等. 化學刺激技術在增強型地熱系統中的應用: 理論、實踐與展望. 地球科學與環境學報, 2016, 38(2):267 doi: 10.3969/j.issn.1672-6561.2016.02.014
      [25] Zhang W Q. Study on the Microscopic Mechanism of Rock Thermal Damage and the Evolution Characteristics of Macroscopic Physical and Mechanical Properties—Taking Typical Rock as an Example[Dissertation]. Xuzhou: China University of Mining and Technology, 2017

      張衛強. 巖石熱損傷微觀機制與宏觀物理力學性質演變特征研究— —以典型巖石為例[學位論文]. 徐州: 中國礦業大學, 2017
      [26] Chen S W, Yang C H, Wang G B. Evolution of thermal damage and permeability of Beishan granite. Appl Therm Eng, 2017, 110: 1533 doi: 10.1016/j.applthermaleng.2016.09.075
      [27] Zhao X G, Wang J, Chen F, et al. Experimental investigations on the thermal conductivity characteristics of Beishan granitic rocks for China’s HLW disposal. Tectonophysics, 2016, 683: 124 doi: 10.1016/j.tecto.2016.06.021
      [28] Li Y, Zhang C, Song W D, et al. Elastic longitudinal wave and porosity of subsea gold deposits. J China Univ Min Technol, 2021, 50(2): 239 doi: 10.13247/j.cnki.jcumt.001224

      李楊, 張超, 宋衛東, 等. 海底金礦巖石彈性縱波與孔隙率特性. 中國礦業大學學報, 2021, 50(2):239 doi: 10.13247/j.cnki.jcumt.001224
      [29] Li S, Ni G H, Wang H, et al. Effects of acid solution of different components on the pore structure and mechanical properties of coal. Adv Powder Technol, 2020, 31(4): 1736 doi: 10.1016/j.apt.2020.02.009
      [30] Chu F J, Liu D W, Tao M, et al. Dynamic damage laws of sandstone under different water bearing conditions based on nuclear magnetic resonance. Chin J Eng, 2018, 40(2): 144

      褚夫蛟, 劉敦文, 陶明, 等. 基于核磁共振的不同含水狀態砂巖動態損傷規律. 工程科學學報, 2018, 40(2):144
    • 加載中
    圖(12) / 表(1)
    計量
    • 文章訪問數:  410
    • HTML全文瀏覽量:  124
    • PDF下載量:  38
    • 被引次數: 0
    出版歷程
    • 收稿日期:  2022-04-24
    • 網絡出版日期:  2022-08-12
    • 刊出日期:  2022-10-25

    目錄

      /

      返回文章
      返回