• 《工程索引》(EI)刊源期刊
    • 中文核心期刊
    • 中國科技論文統計源期刊
    • 中國科學引文數據庫來源期刊

    留言板

    尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

    姓名
    郵箱
    手機號碼
    標題
    留言內容
    驗證碼

    無熟料超細金屬尾礦基固結材料的早期水化與液相特性

    劉娟紅 安樹好 吳愛祥 王洪江 張月月

    劉娟紅, 安樹好, 吳愛祥, 王洪江, 張月月. 無熟料超細金屬尾礦基固結材料的早期水化與液相特性[J]. 工程科學學報, 2022, 44(12): 1999-2007. doi: 10.13374/j.issn2095-9389.2022.05.12.001
    引用本文: 劉娟紅, 安樹好, 吳愛祥, 王洪江, 張月月. 無熟料超細金屬尾礦基固結材料的早期水化與液相特性[J]. 工程科學學報, 2022, 44(12): 1999-2007. doi: 10.13374/j.issn2095-9389.2022.05.12.001
    LIU Juan-hong, AN Shu-hao, WU Ai-xiang, WANG Hong-jiang, ZHANG Yue-yue. Early hydration and liquid phase characteristics of solidified body of clinker-free superfine tailings[J]. Chinese Journal of Engineering, 2022, 44(12): 1999-2007. doi: 10.13374/j.issn2095-9389.2022.05.12.001
    Citation: LIU Juan-hong, AN Shu-hao, WU Ai-xiang, WANG Hong-jiang, ZHANG Yue-yue. Early hydration and liquid phase characteristics of solidified body of clinker-free superfine tailings[J]. Chinese Journal of Engineering, 2022, 44(12): 1999-2007. doi: 10.13374/j.issn2095-9389.2022.05.12.001

    無熟料超細金屬尾礦基固結材料的早期水化與液相特性

    doi: 10.13374/j.issn2095-9389.2022.05.12.001
    基金項目: 國家自然科學基金重點資助項目(51834001)
    詳細信息
      通訊作者:

      E-mail: juanhong1966@hotmail.com

    • 中圖分類號: TB321

    Early hydration and liquid phase characteristics of solidified body of clinker-free superfine tailings

    More Information
    • 摘要: 為探明超細金屬尾礦粉在石灰–石膏體系中的早期水化固結特性,以生石灰、石膏和鐵尾砂為原料,采用超細粉磨制備了無熟料鐵尾砂粉固結材料,提取水化漿體3 min~24 h的液相并測試了其離子濃度及電導率,結合水化放熱速率曲線及掃描電鏡(SEM)、X-ray衍射分析(XRD)、熱重–差熱分析(TG–DSC)等測試結果,研究了固結漿體早期水化行為與液相特性變化的關系。結果表明:固液混合后液相各離子濃度快速上升,在10~30 min達到峰值后快速下降,180 min之后以較緩的速度繼續下降;液相電導率與Ca2+、OH和SO42–離子總濃度變化有較高的一致性;固結材料水化過程中有兩次放熱行為,起止時間分別為0~15 min和20~180 min;水化產物物相分析顯示漿體中90 min可見AFt特征峰及C–S–H吸熱峰。實驗證明:在石灰–石膏–水體系中,鐵尾砂粉表面的非晶態SiO2和Al2O3能夠快速溶解并發生水化反應,生成AFt及C–S–H,水化產物對未水化鐵尾砂顆粒膠結固化,使固結體產生強度;延長粉磨時間可顯著提高鐵尾砂表面非晶態硅鋁成分含量及石灰、石膏的溶解速率,加速漿體的水化并增加水化產物的生成量。

       

    • 圖  1  粉磨細度對無熟料固結材料早期水化放熱的影響. (a) 水化放熱速率; (b) 累積放熱量

      Figure  1.  Effect of fineness on hydration heat release of samples: (a) hydration heat release rate; (b) cumulative heat release

      圖  2  磨細鐵尾砂粉NaOH溶液中溶出Si4+、Al3+濃度變化. (a) Si4+濃度變化; (b) Al3+濃度變化

      Figure  2.  Changes of dissolved Si4+ and Al3+ in NaOH solution: (a) Si4+ concentration variation; (b) Al3+ concentration variation

      圖  3  液相各離子濃度變化. (a) Ca2+ 離子濃度; (b) SO42– 離子濃度; (c) OH 離子濃度; (d) Al3+ 離子濃度; (e) Si4+ 離子濃度

      Figure  3.  Changes of various ion concentrations in the liquid phase: (a) Ca2+ concentration; (b) SO42– concentration; (c) OH concentration; (d) Al3+ concentration; (e) Si4+ concentration

      圖  4  液相電導率變化及其與離子濃度的關系. (a) 液相電導率–時間變化; (b) 電導率與離子濃度的關系

      Figure  4.  Variation of liquid conductivity and its relationship with ion concentration: (a) variation of liquid conductivity with time; (b) relationship between liquid conductivity and ion concentration

      圖  5  不同時間固液分離后固相的XRD圖. (a) 試樣FL150502; (b) 試樣FL150504; (c) 試樣FL150506

      Figure  5.  Solid phase XRD patterns of samples with different times: (a) FL150502; (b) FL150504; (c) FL150506

      圖  6  不同時間固液分離后固相的DSC–TG圖譜. (a)FL150502的DSC圖; (b) FL150504的DSC圖; (c) FL150506的DSC圖; (d) FL150502的TG圖; (e) FL150504的TG圖; (f) FL150506的TG圖

      Figure  6.  TG–DSC analysis diagram of samples with different times: (a) DSC curve of FL150502; (b) DSC curve of FL150504; (c) DSC curve of FL150506; (d) TG curve of FL150502; (e) TG curve of FL150504; (f) TG curve of FL150506

      圖  7  水化1 d試件的SEM圖像. (a) 試樣FL150502; (b) 試樣FL150504; (c) 試樣150506

      Figure  7.  SEM images of 1-day hydration specimen: (a) sample FL150502; (b) sample FL150504; (c) sample FL150506

      表  1  原材料化學成分分析結果(質量分數)

      Table  1.   Analysis of results of the chemical composition of the raw materials %

      Chemical compositionSiO2Al2O3Fe2O3CaOMgOK2ONa2OSO3LossTotal
      Iron tailings60.188.8314.272.722.682.562.261.1794.67
      Lime96.2696.26
      Gypsum2.161.140.6433.690.570.660.7241.4218.6799.67
      下載: 導出CSV

      表  2  無熟料固結材料的基本物理性能

      Table  2.   Basic physical properties of non-clinker consolidated materials

      NumberSpecific surface
      area /( m2?kg–1)
      d(0.5) / μmSetting time / minWater consumption for
      standard consistency / %
      Compressive strength of paste / MPa
      InitialFinal1 d3 d7 d14 d28 d
      FL15050031348.0922531026.40.891.732.142.89
      FL15050262716.21659825.42.933.784.735.867.23
      FL15050491810.34406326.27.7612.6614.2216.7119.18
      FL15050611325.71304827.012.6418.3421.0623.4926.89
      下載: 導出CSV
      中文字幕在线观看
    • [1] Wang H J, Wang Y J, Li W C. Report of Mineral Resources Saving & Comprehensive Utilization in China. Beijing: Geological Publishing House, 2019

      王海軍, 王伊杰, 李文超. 全國礦產資源節約與綜合利用報告. 北京: 地質出版社, 2019
      [2] Cheng H Y, Wu A X, Wu S C, et al. Research status and development trend of solid waste backfill in metal mines. Chin J Eng, 2022, 44(1): 11

      程海勇, 吳愛祥, 吳順川, 等. 金屬礦山固廢充填研究現狀與發展趨勢. 工程科學學報, 2022, 44(1):11
      [3] Liu Q Y, Liu J H, Wang H J, et al. Study on performance control of fine grained tailings paste filling material. Met Mine, 2021(10): 51 doi: 10.19614/j.cnki.jsks.202110008

      劉倩影, 劉娟紅, 王洪江, 等. 細粒級全尾砂膏體充填材料性能調控研究. 金屬礦山, 2021(10):51 doi: 10.19614/j.cnki.jsks.202110008
      [4] Liu J H, Zhou Z B, Wu A X, et al. Preparation and hydration mechanism of low concentration Bayer red mud filling materials. Chin J Eng, 2020, 42(11): 1457

      劉娟紅, 周在波, 吳愛祥, 等. 低濃度拜耳赤泥充填材料制備及水化機理. 工程科學學報, 2020, 42(11):1457
      [5] Liu J H, Zhou Y C, Wu A X, et al. Reconstruction of broken Si–O–Si bonds in iron ore tailings (IOTs) in concrete. Int J Miner Metall Mater, 2019, 26(10): 1329 doi: 10.1007/s12613-019-1811-z
      [6] Sanish K B, Neithalath N, Santhanam M. Monitoring the evolution of material structure in cement pastes and concretes using electrical property measurements. Constr Build Mater, 2013, 49: 288 doi: 10.1016/j.conbuildmat.2013.08.038
      [7] Dong B Q, Zhang J C, Wang Y S, et al. Evolutionary trace for early hydration of cement paste using electrical resistivity method. Constr Build Mater, 2016, 119: 16 doi: 10.1016/j.conbuildmat.2016.03.127
      [8] Kong X M, Lu Z B, Yan J, et al. Influence of triethanolamine on elemental concentrations in aqueous phase of hydrating cement pastes. J Chin Ceram Soc, 2013, 41(7): 981 doi: 10.7521/j.issn.0454-5648.2013.07.16

      孔祥明, 路振寶, 閆娟, 等. 三乙醇胺對水化過程中水泥漿體液相離子濃度的影響. 硅酸鹽學報, 2013, 41(7):981 doi: 10.7521/j.issn.0454-5648.2013.07.16
      [9] Qian R S, Zhang Y S, Zhang Y, et al. Relationships between liquid ion concentration and electrical conductivity during the early hydration of cement–fly ash system. Mater Rev, 2018, 32(12): 2066 doi: 10.11896/j.issn.1005-023X.2018.12.024

      錢如勝, 張云升, 張宇, 等. 水泥–粉煤灰體系早齡期液相離子濃度與電導率的關系. 材料導報, 2018, 32(12):2066 doi: 10.11896/j.issn.1005-023X.2018.12.024
      [10] Liao Y S, Shen Q, Xu P F, et al. Effect of fly ash on the electrical resistivity of cement-based materials during the hydration process. Mater Rep, 2019, 33(8): 1335 doi: 10.11896/cldb.17110298

      廖宜順, 沈晴, 徐鵬飛, 等. 粉煤灰對水泥基材料水化過程電阻率的影響研究. 材料導報, 2019, 33(8):1335 doi: 10.11896/cldb.17110298
      [11] Muazu B S, Wei X S, Wang L. Hydration process and crack tendency of concrete based on resistivity and restrained shrinkage crack. J Wuhan Univ Technol -Mat Sci Edit, 2016, 31(5): 1026 doi: 10.1007/s11595-016-1485-6
      [12] Chen W, Brouwers H J H, Shui Z H. Modeling ion concentrations in pore solution of hydrated cement paste. J Wuhan Univ Technol, 2010, 32(11): 1 doi: 10.3963/j.issn.1671-4431.2010.11.001

      陳偉, Brouwers H J H, 水中和. 水泥漿體液相離子濃度模擬. 武漢理工大學學報, 2010, 32(11):1 doi: 10.3963/j.issn.1671-4431.2010.11.001
      [13] He L, Chen Q, Jiang Z W. Hydration based dynamic calculation model for electric conductivity of hardened cement paste. J Build Mater, 2022, 25(1): 1 doi: 10.3969/j.issn.1007-9629.2022.01.001

      何麗, 陳慶, 蔣正武. 基于水化進程的硬化水泥漿體電導率動態計算模型. 建筑材料學報, 2022, 25(1):1 doi: 10.3969/j.issn.1007-9629.2022.01.001
      [14] Yang N R. Non-Traditional Cementitious Materials Chemistry. Wuhan: Wuhan University of Technology Press, 2018

      楊南如. 非傳統膠凝材料化學. 武漢: 武漢理工大學出版社, 2018
      [15] Qian J S, Yu J C, Sun H Q, et al. Formation and function of ettringite in cement hydrates. J Chin Ceram Soc, 2017, 45(11): 1569 doi: 10.14062/j.issn.0454-5648.2017.11.04

      錢覺時, 余金城, 孫化強, 等. 鈣礬石的形成與作用. 硅酸鹽學報, 2017, 45(11):1569 doi: 10.14062/j.issn.0454-5648.2017.11.04
      [16] Li Y, Wu B H, Ni W, et al. Synergies in early hydration reaction of slag-steel slag-gypsum system. J Northeast Univ (Nat Sci), 2020, 41(4): 581 doi: 10.12068/j.issn.1005-3026.2020.04.022

      李穎, 吳保華, 倪文, 等. 礦渣–鋼渣–石膏體系早期水化反應中的協同作用. 東北大學學報(自然科學版), 2020, 41(4):581 doi: 10.12068/j.issn.1005-3026.2020.04.022
      [17] Liu X, Feng P, Shen X Y, et al. Advances in the understanding of cement hydrate—Calcium silicate hydrate(C–S–H). Mater Rep, 2021, 35(9): 9157 doi: 10.11896/cldb.20040204

      劉新, 馮攀, 沈敘言, 等. 水泥水化產物—水化硅酸鈣(C–S–H)的研究進展. 材料導報, 2021, 35(9):9157 doi: 10.11896/cldb.20040204
      [18] Li Y J, Pan H, Li Z J. Ab initio metadynamics simulations on the formation of calcium silicate aqua complexes prior to the nuleation of calcium silicate hydrate. Cem Concr Res, 2022, 156: 106767 doi: 10.1016/j.cemconres.2022.106767
      [19] Jiang G Z, Wu A X, Wang Y M. Curing performance of alkali-activated cement–phosphorous slag and its compatibility with sulfur tailings. Chin J Eng, 2020, 42(8): 963

      姜關照, 吳愛祥, 王貽明. 堿激發水泥–磷渣固化性能及與含硫尾砂的相容性. 工程科學學報, 2020, 42(8):963
      [20] Wu A X, Jiang G Z, Lan W T, et al. Experimental study on copper slag activity excitation and hydration mechanism analysis. J Central South Univ (Sci Technol), 2017, 48(9): 2498

      吳愛祥, 姜關照, 蘭文濤, 等. 銅爐渣活性激發實驗研究及水化機理分析. 中南大學學報(自然科學版), 2017, 48(9):2498
      [21] Wang R, Liu K, Wan Q, et al. Effect of cellulose ethers with hydroxyethyl group on early hydration of CSA cement. J Build Mater,https://kns.cnki.net/kcms/detail/31.1764.TU.20211012.1522.006.html

      王茹, 劉科, 萬芹, 等. 含羥乙基纖維素醚對CSA水泥早期水化的影響. 建筑材料學報,https://kns.cnki.net/kcms/detail/31.1764.TU.20211012.1522.006.html
      [22] Pan X Y, Zhang G X, Zhang Y Q, et al. Study on properties of nano-SiO2 blended cement pastes for grouting soil nailing. J Build Mater, 2017, 20(2): 255 doi: 10.3969/j.issn.1007-9629.2017.02.017

      潘曉燕, 張廣興, 張晏清, 等. 納米SiO2改性水泥土釘注漿體性能的研究. 建筑材料學報, 2017, 20(2):255 doi: 10.3969/j.issn.1007-9629.2017.02.017
      [23] Plusquellec G, Geiker M R, Lindg?rd J, et al. Determination of the pH and the free alkali metal content in the pore solution of concrete: Review and experimental comparison. Cem Concr Res, 2017, 96: 13 doi: 10.1016/j.cemconres.2017.03.002
      [24] Wang Y, Zhu Y M, Xie R Q, et al. Crystal chemical genes characteristics of albite and prediction of its floatability. Met Mine, 2020(6): 81 doi: 10.19614/j.cnki.jsks.202006012

      王燕, 朱一民, 謝瑞琦, 等. 鈉長石的晶體化學基因特征及其可浮性預測. 金屬礦山, 2020(6):81 doi: 10.19614/j.cnki.jsks.202006012
      [25] Lu X C, Yin L, Zhao L Z, et al. Surface characteristics of general phyllosilicate minerals. J Chin Ceram Soc, 2003, 31(1): 60 doi: 10.3321/j.issn:0454-5648.2003.01.013

      陸現彩, 尹琳, 趙連澤, 等. 常見層狀硅酸鹽礦物的表面特征. 硅酸鹽學報, 2003, 31(1):60 doi: 10.3321/j.issn:0454-5648.2003.01.013
      [26] Chen W Y, Zhou Y Q, Li S, et al. Impact of temperature rising inhibitor on hydration of cement–fly ash cementitious materials and performance of concrete. J Chin Ceram Soc, 2021, 49(8): 1609

      陳煒一, 周予啟, 李嵩, 等. 水化熱抑制劑對水泥–粉煤灰膠凝材料水化和混凝土性能的影響. 硅酸鹽學報, 2021, 49(8):1609
    • 加載中
    圖(7) / 表(2)
    計量
    • 文章訪問數:  475
    • HTML全文瀏覽量:  122
    • PDF下載量:  73
    • 被引次數: 0
    出版歷程
    • 收稿日期:  2022-05-11
    • 網絡出版日期:  2022-07-10
    • 刊出日期:  2022-12-01

    目錄

      /

      返回文章
      返回