• 《工程索引》(EI)刊源期刊
    • 中文核心期刊
    • 中國科技論文統計源期刊
    • 中國科學引文數據庫來源期刊

    留言板

    尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

    姓名
    郵箱
    手機號碼
    標題
    留言內容
    驗證碼

    基于SE注意力機制的廢鋼分類評級方法

    肖鵬程 徐文廣 張妍 朱立光 朱榮 許云峰

    肖鵬程, 徐文廣, 張妍, 朱立光, 朱榮, 許云峰. 基于SE注意力機制的廢鋼分類評級方法[J]. 工程科學學報, 2023, 45(8): 1342-1352. doi: 10.13374/j.issn2095-9389.2022.06.10.002
    引用本文: 肖鵬程, 徐文廣, 張妍, 朱立光, 朱榮, 許云峰. 基于SE注意力機制的廢鋼分類評級方法[J]. 工程科學學報, 2023, 45(8): 1342-1352. doi: 10.13374/j.issn2095-9389.2022.06.10.002
    XIAO Peng-cheng, XU Wen-guang, ZHANG Yan, ZHU Li-guang, ZHU Rong, XU Yun-feng. Research on scrap classification and rating method based on SE attention mechanism[J]. Chinese Journal of Engineering, 2023, 45(8): 1342-1352. doi: 10.13374/j.issn2095-9389.2022.06.10.002
    Citation: XIAO Peng-cheng, XU Wen-guang, ZHANG Yan, ZHU Li-guang, ZHU Rong, XU Yun-feng. Research on scrap classification and rating method based on SE attention mechanism[J]. Chinese Journal of Engineering, 2023, 45(8): 1342-1352. doi: 10.13374/j.issn2095-9389.2022.06.10.002

    基于SE注意力機制的廢鋼分類評級方法

    doi: 10.13374/j.issn2095-9389.2022.06.10.002
    基金項目: 國家自然科學基金資助項目(51904107);河北省自然科學基金資助項目(E2020209005,E2021209094);河北省高等學校科學技術研究項目(BJ2019041);河北省“三三三人才工程”資助項目(A202102002);唐山市人才資助重點項目(A202010004)
    詳細信息
      通訊作者:

      E-mail:zhuliguang@ncst.edu.cn

    • 中圖分類號: TP274+.5

    Research on scrap classification and rating method based on SE attention mechanism

    More Information
    • 摘要: 為了解決傳統人工方法對廢鋼分類評級人為因素干擾大且效率低下等問題,提出基于擠壓?激勵(Squeeze?Excitation,SE)注意力機制構建廢鋼分類評級的深度學習網絡模型,并對采集到的廢鋼卸載過程圖像進行模型訓練和驗證。首先,搭建物理尺寸比例為1∶3廢鋼質量查驗物理模型,采用高分辨率視覺傳感器模擬采集貨車卸載廢鋼作業場景下不同廢鋼的形貌特征;然后,對采集到的廢鋼圖像使用跨階段局部網絡進行特征提取,利用空間金字塔結構解決特征丟失問題,采用注意力機制關注通道間的相關性;最后,在包含7個標簽分類的兩個數據集進行模型訓練與驗證。實驗表明:該模型能夠有效地對不同級別的廢鋼進行自動評級判定,全類別準確率達到83.7%,全類別平均精度為88.8%,在準確性方面相比于傳統人工驗質方法具有顯著優勢,解決了廢鋼入庫過程中質量評價的公正性難題。

       

    • 圖  1  CSSNet模型網絡圖

      Figure  1.  CSSNet Model network diagram

      圖  2  CSP結構圖

      Figure  2.  CSP structure diagram

      圖  3  SPP模塊結構圖

      Figure  3.  SPP module structure diagram

      圖  4  SE模塊結構圖

      Figure  4.  SE module structure diagram

      圖  5  模型在HK_S和HK_L數據集上loss值變化圖. (a) HK_S數據集,batch-size=16; (b)為HK_L數據集,batch-size=16; (c) HK_S數據集(添加SE注意力); (d) HK_L數據集(添加SE注意力)

      Figure  5.  Changes in the loss value of the model on the HK_S and HK_L datasets: (a) HK_S dataset, batch-size=16; (b) HK_L dataset, batch-size=16; (c) HK_S dataset (add SE attention); (d) HK_L dataset (add SE attention)

      圖  6  模型加入SE注意力機制前后的表現效果對比. (a)未加SE注意力機制; (b)添加SE注意力機制

      Figure  6.  Comparison of performance effects before and after adding the SE attention mechanism into the model: (a) no SE attention mechanism; (b) add SE attention mechanism

      圖  7  模型檢測效果圖. (a)為未檢測廢鋼圖像; (b)檢測后的廢鋼圖像

      Figure  7.  Model detection renderings: (a) the undetected scrap image; (b) the detected scrap image

      圖  8  各類別評價指標曲線. (a) P?R曲線; (b) F1曲線; (c) R曲線; (d) P曲線

      Figure  8.  Evaluation index curve of each category: (a) PR curve; (b) F1 curve; (c) R curve; (d) P curve

      表  1  HK_S、HK_L數據集

      Table  1.   HK_S and HK_L datasets

      DatasetsImagesLabelsTraining imagesTraining labelsValidation imagesValidation labels
      HK_S1396297125575014547
      HK_L2781259225011388281204
      下載: 導出CSV

      表  2  HK_S和HK_L數據集各類別標簽數量

      Table  2.   Number of labels for each category in HK_S and HK_L datasets

      Label categoryHK_S labelsHK_S training labelsHK_L labelsHK_L training labels
      <3 mm9257184164
      3?6 mm327319654598
      >6 mm4799439395968668
      Galvanized365337730663
      Greasy dirt196173392359
      Paint12689252233
      Inclusion392382784703
      下載: 導出CSV

      表  3  正例與負例

      Table  3.   Positive and negative

      TypeP (Positive)N (Negative)
      T (True)True positive (TP)True negative (TN)
      F (False)False positive (FP)False negative (FN)
      下載: 導出CSV

      表  4  HK_S數據集模型評價指數

      Table  4.   HK_S dataset model evaluation index

      ModelBatch-sizeEpochF1mAP
      Yolov5s82000.480.506
      CSP+SPP82000.480.552
      CSP+SPP+SE82000.600.642
      Yolov5s162000.640.646
      CSP+SPP162000.630.665
      CSP+SPP+SE162000.710.719
      Yolov5s322000.680.684
      CSP+SPP322000.660.709
      CSP+SPP+SE322000.700.720
      CSP+SPP+SE323000.750.754
      下載: 導出CSV

      表  5  HK_L數據集模型評價指數

      Table  5.   HK_L dataset model evaluation index

      ModelBatch-sizeEpochF1mAP
      Yolov5s82000.610.641
      CSP+SPP82000.690.699
      CSP+SPP+SE82000.750.755
      Yolov5s162000.790.792
      CSP+SPP162000.790.802
      CSP+SPP+SE162000.830.833
      Yolov5s322000.820.805
      CSP+SPP322000.840.839
      CSP+SPP+SE322000.870.868
      CSP+SPP+SE324000.870.888
      下載: 導出CSV

      表  6  不同網絡模型檢測結果比較

      Table  6.   Comparison of detection results of different network models

      ModelDatasetsmAP/%
      YOLOv4HK_S60.0
      YOLOv5sHK_S50.6
      Faster R-CNNHK_S50.9
      CSSNetHK_S64.2
      YOLOv4HK_L68.1
      YOLOv5sHK_L64.1
      Faster R-CNNHK_L64.1
      CSSNetHK_L75.5
      下載: 導出CSV

      表  7  各類別驗證集的表現情況

      Table  7.   Performance under each category of the validation set

      ClassImagesLabelsP/%R/%AP/%
      <3 mm282010079.886.6
      3–6 mm285689.591.293.7
      >6 mm2892891.283.788.8
      Galvanized286787.394.094.0
      Paint288192.085.291.9
      Greasy dirt283383.169.776.7
      Inclusion281910081.689.8
      下載: 導出CSV
      中文字幕在线观看
    • [1] Wu Y G, Xiao B Q, Zhu L G, et al. Current situation analysis and prospect of iron and steel raw material for electric arc furnace steelmaking. Iron Steel, 2021, 56(11): 55 doi: 10.13228/j.boyuan.issn0449-749x.20210170

      吳耀光, 肖步慶, 朱立光, 等. 電爐煉鋼鋼鐵原料的現狀分析與展望. 鋼鐵, 2021, 56(11):55 doi: 10.13228/j.boyuan.issn0449-749x.20210170
      [2] Zhu R, Wu X T, Wei G S, et al. Development of green and intelligent technologies in electric arc furnace steelmaking processes. Iron Steel, 2019, 54(8): 9 doi: 10.13228/j.boyuan.issn0449-749x.20190188

      朱榮, 吳學濤, 魏光升, 等. 電弧爐煉鋼綠色及智能化技術進展. 鋼鐵, 2019, 54(8):9 doi: 10.13228/j.boyuan.issn0449-749x.20190188
      [3] Shangguan F Q, Yin R Y, Li Y, et al. Dissussion on strategic significance of developing full scrap EAF process in China. Iron Steel, 2021, 56(8): 86 doi: 10.13228/j.boyuan.issn0449-749x.20200401

      上官方欽, 殷瑞鈺, 李煜, 等. 論中國發展全廢鋼電爐流程的戰略意義. 鋼鐵, 2021, 56(8):86 doi: 10.13228/j.boyuan.issn0449-749x.20200401
      [4] Wang Z L, Gu C, Wang M, et al. Research progress and application status of deep learning in steelmaking process. Chin J Eng, http://kns.cnki.net/kcms/detail/10.1297.TF.20220506.1903.003.html

      王仲亮, 顧超, 王敏, 等. 深度學習在煉鋼過程中的研究進展及應用現狀. 工程科學學報, http://kns.cnki.net/kcms/detail/10.1297.TF.20220506.1903.003.html
      [5] Shangguan F Q, Li X P, Zhou J C, et al. Strategic research on development of steel scrap resources in China. Iron Steel, 2020, 55(6): 8 doi: 10.13228/j.boyuan.issn0449-749x.20190427

      上官方欽, 酈秀萍, 周繼程, 等. 中國廢鋼資源發展戰略研究. 鋼鐵, 2020, 55(6):8 doi: 10.13228/j.boyuan.issn0449-749x.20190427
      [6] Ma Y Q. Do iron ore, scrap steel, carbon emission allowance, and seaborne transportation prices drive steel price fluctuations? Resour Policy, 2021, 72: 102115 doi: 10.1016/j.resourpol.2021.102115
      [7] Smirnov N V, Rybin E I. Machine learning methods for solving scrap metal classification task // 2020 International Russian Automation Conference (RusAutoCon). Sochi, 2020: 1020
      [8] Gao Z J, Sridhar S, Spiller D E, et al. Applying improved optical recognition with machine learning on sorting Cu impurities in steel scrap. J Sustain Metall, 2020, 6(4): 785 doi: 10.1007/s40831-020-00300-8
      [9] Koyanaka S, Kobayashi K. Automatic sorting of lightweight metal scrap by sensing apparent density and three-dimensional shape. Resour Conserv Recycl, 2010, 54(9): 571 doi: 10.1016/j.resconrec.2009.10.014
      [10] Díaz-Romero D, Sterkens W, Van den Eynde S, et al. Deep learning computer vision for the separation of Cast-and Wrought-Aluminum scrap. Resour Conserv Recycl, 2021, 172: 105685 doi: 10.1016/j.resconrec.2021.105685
      [11] Li Y F, Qin X P, Zhang Z Y, et al. A robust identification method for nonferrous metal scraps based on deep learning and superpixel optimization. Waste Manag Res, 2021, 39(4): 573 doi: 10.1177/0734242X20987884
      [12] Chen S, Hu Z L, Wang C, et al. Research on the process of small sample non-ferrous metal recognition and separation based on deep learning. Waste Manag, 2021, 126: 266 doi: 10.1016/j.wasman.2021.03.019
      [13] Ramsurrun N, Suddul G, Armoogum S, et al. Recyclable waste classification using computer vision and deep learning // 2021 Zooming Innovation in Consumer Technologies Conference (ZINC). Novi Sad, 2021: 11
      [14] Mei Y G. Research on Intelligent Classification of Scrap Based on Machine Vision and LIBS Technology [Dissertation]. Beijing: University of Science and Technology Beijing, 2021

      梅亞光. 基于機器視覺與LIBS技術的廢鋼智能分類研究[學位論文]. 北京: 北京科技大學, 2021
      [15] Xu G, Li M, Xu J W. Application of machine learning in automatic discrimination of product quality of deep drawn steel. Chin J Eng, 2022, 44(6): 1062 doi: 10.3321/j.issn.1001-053X.2022.6.bjkjdxxb202206011

      徐鋼, 黎敏, 徐金梧. 機器學習在深沖鋼質量自動判級中的應用. 工程科學學報, 2022, 44(6):1062 doi: 10.3321/j.issn.1001-053X.2022.6.bjkjdxxb202206011
      [16] Li J Y, Yang Z F, Zheng J F, et al. Applications of iron and steel industry with deep learning technologies. Iron Steel, 2021, 56(9): 43 doi: 10.13228/j.boyuan.issn0449-749x.20210296

      李江昀, 楊志方, 鄭俊鋒, 等. 深度學習技術在鋼鐵工業中的應用. 鋼鐵, 2021, 56(9):43 doi: 10.13228/j.boyuan.issn0449-749x.20210296
      [17] Wang D L, Zhang Y Q, Pan Y, et al. An automated inspection method for the steel box girder bottom of long-span bridges based on deep learning. IEEE Access, 2020, 8: 94010 doi: 10.1109/ACCESS.2020.2994275
      [18] Zhang L, Yang F, Zhang Y D, et al. Road crack detection using deep convolutional neural network // 2016 IEEE International Conference on Image Processing (ICIP). Phoenix, 2016: 3708
      [19] Liu Z D, Li W X, Wei Z H. Qualitative classification of waste textiles based on near infrared spectroscopy and the convolutional network. Text Res J, 2020, 90(9-10): 1057 doi: 10.1177/0040517519886032
      [20] Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need // Advances in Neural Information Processing Systems. Long Beach, 2017: 30
      [21] Wang C Y, Liao H Y M, Wu Y H, et al. CSPNet: A new backbone that can enhance learning capability of CNN // Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. Seattle, 2020: 1571
      [22] Krizhevsky A, Sutskever I, Hinton G E. ImageNet classification with deep convolutional neural networks. Commun ACM, 2017, 60(6): 84 doi: 10.1145/3065386
      [23] He K M, Zhang X Y, Ren S Q, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition. IEEE Trans Pattern Anal Mach Intell, 2015, 37(9): 1904 doi: 10.1109/TPAMI.2015.2389824
      [24] Hu J, Shen L, Sun G. Squeeze-and-excitation networks // Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Salt Lake City, 2018: 7132
      [25] Zhu X K, Lyu S C, Wang X, et al. TPH-YOLOv5: Improved YOLOv5 based on transformer prediction head for object detection on drone-captured scenarios // Proceedings of the IEEE/CVF International Conference on Computer Vision. Montreal, 2021: 2778
      [26] He K M, Zhang X Y, Ren S Q, et al. Deep residual learning for image recognition // Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, 2016: 770
      [27] Alzubaidi L, Zhang J L, Humaidi A J, et al. Review of deep learning: Concepts, CNN architectures, challenges, applications, future directions. J Big Data, 2021, 8(1): 53 doi: 10.1186/s40537-021-00444-8
    • 加載中
    圖(8) / 表(7)
    計量
    • 文章訪問數:  547
    • HTML全文瀏覽量:  204
    • PDF下載量:  92
    • 被引次數: 0
    出版歷程
    • 收稿日期:  2022-06-10
    • 網絡出版日期:  2022-09-19
    • 刊出日期:  2023-08-25

    目錄

      /

      返回文章
      返回