• 《工程索引》(EI)刊源期刊
    • 中文核心期刊
    • 中國科技論文統計源期刊
    • 中國科學引文數據庫來源期刊

    留言板

    尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

    姓名
    郵箱
    手機號碼
    標題
    留言內容
    驗證碼

    考慮不同初始狀態的黃河泥沙三軸靜力剪切特性試驗

    王鈺軻 陳宇源 邵景干 宋迎賓 鐘燕輝

    王鈺軻, 陳宇源, 邵景干, 宋迎賓, 鐘燕輝. 考慮不同初始狀態的黃河泥沙三軸靜力剪切特性試驗[J]. 工程科學學報, 2023, 45(10): 1782-1794. doi: 10.13374/j.issn2095-9389.2022.08.16.004
    引用本文: 王鈺軻, 陳宇源, 邵景干, 宋迎賓, 鐘燕輝. 考慮不同初始狀態的黃河泥沙三軸靜力剪切特性試驗[J]. 工程科學學報, 2023, 45(10): 1782-1794. doi: 10.13374/j.issn2095-9389.2022.08.16.004
    WANG Yuke, CHEN Yuyuan, SHAO Jinggan, SONG Yingbin, ZHONG Yanhui. Experimental study on the triaxial static shear characteristics of Yellow River silt under different initial states[J]. Chinese Journal of Engineering, 2023, 45(10): 1782-1794. doi: 10.13374/j.issn2095-9389.2022.08.16.004
    Citation: WANG Yuke, CHEN Yuyuan, SHAO Jinggan, SONG Yingbin, ZHONG Yanhui. Experimental study on the triaxial static shear characteristics of Yellow River silt under different initial states[J]. Chinese Journal of Engineering, 2023, 45(10): 1782-1794. doi: 10.13374/j.issn2095-9389.2022.08.16.004

    考慮不同初始狀態的黃河泥沙三軸靜力剪切特性試驗

    doi: 10.13374/j.issn2095-9389.2022.08.16.004
    基金項目: 國家自然科學基金資助項目(52178369, 52109140);河南省優秀青年基金資助項目(232300421069); 中原科技創新領軍人才資助項目(234200510014)
    詳細信息
      通訊作者:

      E-mail: chen.yuyuan.137@s.kyushu-u.ac.jp

    • 中圖分類號: U416.1

    Experimental study on the triaxial static shear characteristics of Yellow River silt under different initial states

    More Information
    • 摘要: 開展了一系列靜態三軸剪切試驗,研究了不同初始條件(圍壓、密實度)以及不同試驗條件(剪切速率、排水條件)對黃河泥沙靜力強度以及變形特性的影響,得到了黃河泥沙的應力應變曲線發展規律,以及應力路徑、抗剪強度包線、應力比曲線和不同特征狀態下的內摩擦角分布、初始剪切模量以及極限偏應力等指標。結果表明:黃河泥沙的抗剪強度對圍壓、密實度以及排水條件更為敏感,具體而言,峰值強度、臨界強度均隨著圍壓與密實度的提高而增大,不排水條件下的抗剪強度大于排水條件;不排水條件下孔壓的發展與排水條件下的剪脹特性具有對照關系,但孔壓較剪脹特性發展得更為迅速,并且得到黃河泥沙的特征狀態內摩擦角分布區間介于22.6°到38.1°之間。本研究可以為黃河泥沙在路基工程中的資源化利用提供數據和理論參考。

       

    • 圖  1  黃河泥沙土樣

      Figure  1.  Yellow River silt

      圖  2  黃河泥沙級配曲線

      Figure  2.  Grading curve of Yellow River silt

      圖  3  GDS三軸試驗儀

      Figure  3.  GDS triaxial test apparatus

      圖  4  黃河泥沙三軸試樣

      Figure  4.  Triaxial samples of Yellow River silt

      圖  5  不同條件下應力應變關系對比. (a)圍壓;(b)密實度;(c)剪切速率

      Figure  5.  Comparison of stress–strain curve under different conditions: (a) confining pressure; (b) relative density; (c) shear rate

      圖  6  不同條件下體應變曲線與歸一化孔壓曲線對比.(a)圍壓;(b)密實度;(c)剪切速率

      Figure  6.  Comparison between volumetric strain curve and normalized pore pressure curve under different conditions: (a) confining pressure; (b) relative density; (c) shear rate

      圖  7  不同排水條件下黃河泥沙的應力路徑

      Figure  7.  Stress path of Yellow River silt under different drained conditions

      圖  8  CD試驗條件下強度包線

      Figure  8.  Strength envelope of CD test

      圖  9  CU試驗條件下強度包線

      Figure  9.  Strength envelope of CU test

      圖  10  不同條件下應力比曲線對比. (a)圍壓;(b)密實度;(c)剪切速率

      Figure  10.  Comparison of the stress ratio curves under different conditions: (a) confining pressure; (b) relative density; (c) shear rate

      圖  11  不同條件下動內摩擦角曲線對比. (a)圍壓;(b)密實度;(c)剪切速率

      Figure  11.  Comparison of mobilized internal friction angle curve under different conditions: (a) confining pressure; (b) relative density; (c) shear rate

      圖  12  不同試驗條件下的初始剪切模量. (a)圍壓;(b)密實度;(c)剪切速率

      Figure  12.  Initial shear modulus under different experimental conditions: (a) confining pressure; (b) relative density; (c) shear rate

      圖  13  不同試驗條件下極限偏應力. (a)圍壓;(b)密實度;(c)剪切速率

      Figure  13.  Ultimate deviator stress strength under different experimental conditions: (a) confining pressure; (b) relative density; (c) shear rate

      表  1  黃河泥沙基本物理性質

      Table  1.   Basic physical properties of Yellow River silt

      Coefficient of uniformity, CuCoefficient of graduation, Ccρdmax/(g·cm?3)ρdmin/(g·cm?3)Liquid limit, ωL/%Plastic limit, ωP/%IPGS
      5.081.6621.651.35723.812.411.42.7
      下載: 導出CSV

      表  2  黃河泥沙三軸試驗方案

      Table  2.   Triaxial test program of Yellow River silt

      Test typeConfining pressure/kPaRelative density/%Shear rate/(kPa·min?1)
      CD/CU50607
      100407
      602, 7, 12
      807
      200607
      400607
      600607
      下載: 導出CSV

      表  3  特征狀態下的強度擬合包線參數值

      Table  3.   Parameters of fitting strength envelope at characteristic states

      Test typeCharacteristic statesAnR2
      CDCritical state1.161.020.99
      Peak state1.240.990.99
      Phase transformation state0.981.080.99
      CUPeak (critical) state1.251.030.99
      Peak pore pressure state1.11.080.99
      下載: 導出CSV

      表  4  排水條件下各特征狀態對應的內摩擦角

      Table  4.   Internal friction angles at different characteristic states under CD condition

      Confining pressure/kPaRelative density/%Shear rate/(kPa·min?1)φps/(°)φcs/(°)φpt/(°)
      5060731.83023.95
      10040727.526.923.76
      602, 7, 1234.4, 33.2, 30.532.9, 31.7, 29.326.31, 26.03, 24.28
      80738.133.827.6
      20060728.726.825.21
      40060731.630.929.24
      60060730.629.829.17
      下載: 導出CSV

      表  5  不排水條件特征狀態下的內摩擦角

      Table  5.   Internal friction angles at different characteristic states under CU condition

      Confining pressure/kPaRelative density/%Shear rate/(kPa·min?1)φp(φcs)/(°)φup/(°)
      5060732.928.1
      10040725.722.6
      602, 7, 1232.9, 32.6, 32.828.1, 29.1, 29.4
      80734.129.6
      20060733.230.2
      40060733.231.2
      60060734.132.7
      下載: 導出CSV

      表  6  不同試驗條件下的初始剪切模量以及極限偏應力

      Table  6.   Initial shear modulus and ultimate deviator stress strength under different test conditions

      Confining pressure/kPaRelative
      density/%
      Shear rate/(kPa·min?1)Test typeaEi/MPab(σ1σ3)ult/MPaR2
      50607CD3.050.339.330.110.994
      100607CD1.630.614.130.240.989
      200607CD1.160.862.280.440.986
      400607CD0.841.191.020.980.993
      600607CD0.801.250.691.450.991
      100407CD4.940.205.180.190.984
      100807CD1.390.723.260.310.972
      100602CD1.610.624.010.250.981
      1006012CD1.690.594.870.210.996
      50607CU7.460.131.720.580.994
      100607CU4.090.241.540.650.99
      200607CU1.810.551.090.920.991
      400607CU0.911.100.771.300.996
      600607CU0.611.640.671.490.999
      100407CU6.450.164.210.240.976
      100807CU3.720.270.771.300.995
      100602CU3.910.261.370.730.991
      1006012CU3.600.281.680.600.980
      下載: 導出CSV
      中文字幕在线观看
    • [1] An C H, Guo X Y, Wu H L, et al. Study on configuration scheme of sediment treatment and utilization of the Yellow River. Yellow River, 2013, 35(10): 54 doi: 10.3969/j.issn.1000-1379.2013.10.018

      安催花, 郭選英, 吳海亮, 等. 黃河泥沙處理和利用配置方案研究. 人民黃河, 2013, 35(10):54 doi: 10.3969/j.issn.1000-1379.2013.10.018
      [2] Lin X Y, Liao Z S, Su X S, et al. Groundwater resources and their countermeasures of development and utilization in Yellow River Basin. J Jilin Univ (Earth Sci Ed), 2006, 36(5): 677

      林學鈺, 廖資生, 蘇小四, 等. 黃河流域地下水資源及其開發利用對策. 吉林大學學報(地球科學版), 2006, 36(5):677
      [3] Wang J, Yao S M, Zhou Y J. Review on river sediment resources utilization in China. J Sediment Res, 2019, 44(1): 73 doi: 10.16239/j.cnki.0468-155x.2019.01.011

      王軍, 姚仕明, 周銀軍. 我國河流泥沙資源利用的發展與展望. 泥沙研究, 2019, 44(1):73 doi: 10.16239/j.cnki.0468-155x.2019.01.011
      [4] He H T, Yue Q Y, Su Y, et al. Preparation and mechanism of the sintered bricks produced from Yellow River silt and red mud. J Hazard Mater, 2012, 203-204: 53 doi: 10.1016/j.jhazmat.2011.11.095
      [5] Jiang S, Xu J X, Song Y B, et al. Effect of calcination pretreatment on mechanical properties of alkali-activated artificial stone incorporating Yellow River silt. J Clean Prod, 2022, 364: 132682 doi: 10.1016/j.jclepro.2022.132682
      [6] Yang L Y, Ma X, Mei R F, et al. Study on preparation and performance of ceramsite from sediment in Yellow River desilting basin. Inorg Chem Ind, 2022, 54(5): 109

      楊麗艷, 馬鑫, 梅銳鋒, 等. 黃河流域沉沙池泥沙制備陶粒及其性能研究. 無機鹽工業, 2022, 54(5):109
      [7] Zhang X N, Sun H, Jiang P, et al. Development and performance characterization of a composite dust suppressant for Yellow River alluvial silt using response surface methodology. J Clean Prod, 2022, 376: 134293 doi: 10.1016/j.jclepro.2022.134293
      [8] Zhang H B, Liu M P, Shuo Z, et al. An experimental investigation of the triaxial shear behaviors of silt-based foamed concrete. Case Stud Constr Mater, 2021, 15: e00713
      [9] Wang B M, Li G N, Han J N, et al. Study on the properties of artificial flood-prevention stone made by Yellow River silt. Constr Build Mater, 2017, 144: 484 doi: 10.1016/j.conbuildmat.2017.03.206
      [10] Zhan J, He Y J, Zhao G Z, et al. Quantitative evaluation of the spatial variation of surface soil properties in a typical alluvial plain of the lower Yellow River using classical statistics, geostatistics and single fractal and multifractal methods. Appl Sci, 2020, 10(17): 5796 doi: 10.3390/app10175796
      [11] Zhang J R, Meng Q S, Zhang Y, et al. Effect of penetration rates on the piezocone penetration test in the Yellow River Delta silt. J Ocean Univ China, 2022, 21(2): 361 doi: 10.1007/s11802-022-4934-1
      [12] Du X, Sun Y F, Song Y P, et al. In-situ observation of wave-induced pore water pressure in seabed silt in the Yellow River Estuary of China. J Mar Environ Eng, 2021, 10(4): 305
      [13] Liu X L, Zhang M S, Zhang H, et al. Physical and mechanical properties of loess discharged from the Yellow River into the Bohai Sea, China. Eng Geol, 2017, 227: 4 doi: 10.1016/j.enggeo.2017.04.019
      [14] Zhang H, Liu X L, Jia Y G, et al. Rapid consolidation characteristics of Yellow River-derived sediment: Geotechnical characterization and its implications for the deltaic geomorphic evolution. Eng Geol, 2020, 270: 105578 doi: 10.1016/j.enggeo.2020.105578
      [15] Zhao R H, Hua L L, Liu H Y, et al. Feasibility study on Yellow River sediment used in subgrade filling of expressway. Yellow River, 2021, 43(2): 122 doi: 10.3969/j.issn.1000-1379.2021.02.025

      趙然杭, 華麗麗, 劉恒洋, 等. 黃河泥沙用于高速公路路基填筑的可行性研究. 人民黃河, 2021, 43(2):122 doi: 10.3969/j.issn.1000-1379.2021.02.025
      [16] Yuan Y Q, Li W, Guo T, et al. Study on water stability of silty soil in eastern Henan section formerly flooded by the Yellow River. J Henan Univ (Nat Sci), 2015, 45(2): 235

      袁玉卿, 李偉, 郭濤, 等. 豫東黃泛區粉砂土的水穩定性研究. 河南大學學報(自然科學版), 2015, 45(2):235
      [17] Yuan Y Q, Zhou J, Song K, et al. Test on engineering properties of silty soil in Yellow River flooded area of eastern Henan. J Henan Univ (Nat Sci), 2020, 50(5): 602

      袁玉卿, 周婧, 宋寬, 等. 豫東黃泛區粉砂土工程性質試驗. 河南大學學報(自然科學版), 2020, 50(5):602
      [18] Liu M C, Hu S F, Dai P F. Investigation on shear behavior of calcareous sand in South China Sea in undrained triaxial tests. China J Highw Transp, 2022, 35(4): 69 doi: 10.3969/j.issn.1001-7372.2022.04.004

      劉萌成, 胡帥峰, 戴鵬飛. 南海鈣質砂不排水剪切特性三軸試驗. 中國公路學報, 2022, 35(4):69 doi: 10.3969/j.issn.1001-7372.2022.04.004
      [19] Yi M H. Static Characteristics and Particle Crushing Characteristics of Coarse-grained Soil of Red Sandstone [Dissertation]. Xiangtan: Hunan University of Science and Technology, 2020

      易梅輝. 紅砂巖粗粒土的靜力特性與顆粒破碎特征[學位論文]. 湘潭: 湖南科技大學, 2020
      [20] Yin K Y. Study on Particle Crushing and Wetting Deformation Characteristics of Soft Rock Filler [Dissertation]. Xi'an: Changan University, 2020

      殷坤垚. 軟巖填料顆粒破碎及濕化變形特性研究[學位論文]. 西安: 長安大學, 2020
      [21] Ma Y. Experimental Study on Deformation Characteristics of Loess Subgrade in Yuzhong under Dry-wet Cycle [Dissertation]. Lanzhou: Lanzhou Jiatong University, 2020

      馬瑩. 干濕循環作用下榆中黃土路基變形特性試驗研究[學位論文]. 蘭州: 蘭州交通大學, 2020
      [22] Nie R S, Dong J L, Cheng L H, et al. The study on static triaxial test of heavy haul railway filler of subgrade roadbed under low confining pressure. J Railw Sci Eng, 2019, 16(11): 2707

      聶如松, 董俊利, 程龍虎, 等. 重載鐵路基床填料低圍壓靜三軸試驗研究. 鐵道科學與工程學報, 2019, 16(11):2707
      [23] Chen Z M, Jin M D, Xu Y F, et al. Strength characteristics of cement stabilized sea sand. Environ Sci Technol, 2018, 41(4): 22

      陳志明, 金明東, 徐永福, 等. 水泥固化吹填海砂的強度特性. 環境科學與技術, 2018, 41(4):22
      [24] Wang Q Y, Zhang J S, Deng G D, et al. Large-scale triaxial test study on shear dilatancy of subgrade filler of group B coarse-grained soil of high speed railway. J Railw Sci Eng, 2015, 12(4): 731 doi: 10.3969/j.issn.1672-7029.2015.04.003

      王啟云, 張家生, 鄧國棟, 等. 高速鐵路路基粗粒土B組填料剪脹特性的大型三軸試驗研究. 鐵道科學與工程學報, 2015, 12(4):731 doi: 10.3969/j.issn.1672-7029.2015.04.003
      [25] Cheng Z H, Song Z Y, Huang B, et al. Experiment of influence of stone content and clay content on mechanical properties of compacted gravelly soil. China J Highw Transp, 2018, 31(8): 47 doi: 10.3969/j.issn.1001-7372.2018.08.005

      程澤海, 宋澤源, 黃博, 等. 含石量與含泥量對壓實礫石土力學特性影響的試驗. 中國公路學報, 2018, 31(8):47 doi: 10.3969/j.issn.1001-7372.2018.08.005
      [26] Wang Y K, Cao T C, Shao J G, et al. Experimental study on static characteristics of the Yellow River silt under (triaxial) consolidated undrained conditions. Mar Georesources Geotechnol, 2023, 41(3): 285 doi: 10.1080/1064119X.2022.2030827
      [27] Ren J. Mechanical Properties of Fujian Standard Sand under High Pressure Triaxial Test [Dissertation]. Jilin: Northeast Dianli University, 2018

      任杰. 高壓三軸試驗下福建標準砂的力學特性[學位論文]. 吉林: 東北電力大學, 2018
      [28] Xiang Y Y. Triaxial Test Study on Shear Characteristics of Calcareous Sand in Coral Reefs [Dissertation]. Hangzhou: Zhejiang University of Technology, 2020

      相盈盈. 珊瑚礁鈣質砂剪切特性三軸試驗研究[學位論文]. 杭州: 浙江工業大學, 2020
      [29] Ishihara K, Tatsuoka F, Yasuda S. Undrained deformation and liquefaction of sand under cyclic stresses. Soils Found, 1975, 15(1): 29 doi: 10.3208/sandf1972.15.29
      [30] Andersen K H, Schjetne K. Database of friction angles of sand and consolidation characteristics of sand, silt, and clay. J Geotech Geoenviron Eng, 2013, 139(7): 1140 doi: 10.1061/(ASCE)GT.1943-5606.0000839
      [31] Liu M C, Liu H L, Gao Y F. New double yield surface model for coarse granular materials incorporating nonlinear unified failure criterion. J Cent South Univ, 2012, 19(11): 3236 doi: 10.1007/s11771-012-1400-z
      [32] Baker R. Nonlinear Mohr envelopes based on triaxial data. J Geotech Geoenviron Eng, 2004, 130(5): 498 doi: 10.1061/(ASCE)1090-0241(2004)130:5(498)
      [33] Sadrekarimi A, Olson S M. Critical state friction angle of sands. Géotechnique, 2011, 61(9): 771
      [34] Wu Y, Yamamoto H, Cui J, et al. Influence of load mode on particle crushing characteristics of silica sand at high stresses. Int J Geomech, 2020, 20(3): 04019194 doi: 10.1061/(ASCE)GM.1943-5622.0001600
      [35] Xiao Y, Liu H L, Chen Y M, et al. Strength and deformation of rockfill material based on large-scale triaxial compression tests. I:Influences of density and pressure. J Geotech Geoenviron Eng, 2014, 140(12): 04014070
      [36] Yu F W, Su L J. Particle breakage and the mobilized drained shear strengths of sand. J Mt Sci, 2016, 13(8): 1481 doi: 10.1007/s11629-016-3870-1
      [37] Alps M. The Phase Transformation Friction Angle of Sand [Dissertation]. Las Vegas: University of Nevada, 2007
      [38] Zhang H Q, Tannant D D, Jing H W, et al. Evolution of cohesion and friction angle during microfracture accumulation in rock. Nat Hazards, 2015, 77(1): 497 doi: 10.1007/s11069-015-1592-2
      [39] Duncan J M, Chang C Y. Nonlinear analysis of stress and strain in soils. J Soil Mech And Found Div, 1970, 96(5): 1629 doi: 10.1061/JSFEAQ.0001458
    • 加載中
    圖(13) / 表(6)
    計量
    • 文章訪問數:  236
    • HTML全文瀏覽量:  86
    • PDF下載量:  55
    • 被引次數: 0
    出版歷程
    • 收稿日期:  2022-08-16
    • 網絡出版日期:  2023-01-12
    • 刊出日期:  2023-10-25

    目錄

      /

      返回文章
      返回