• 《工程索引》(EI)刊源期刊
    • 中文核心期刊
    • 中國科技論文統計源期刊
    • 中國科學引文數據庫來源期刊

    留言板

    尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

    姓名
    郵箱
    手機號碼
    標題
    留言內容
    驗證碼

    新型快速高精度主動學習算法的開發:以MAX相晶體的材料力學性能預測為例

    李娜 宗甜心 王魯寧

    李娜, 宗甜心, 王魯寧. 新型快速高精度主動學習算法的開發:以MAX相晶體的材料力學性能預測為例[J]. 工程科學學報. doi: 10.13374/j.issn2095-9389.2023.03.15.001
    引用本文: 李娜, 宗甜心, 王魯寧. 新型快速高精度主動學習算法的開發:以MAX相晶體的材料力學性能預測為例[J]. 工程科學學報. doi: 10.13374/j.issn2095-9389.2023.03.15.001
    LI Na, ZONG Tianxin, WANG Luning. Development of a novel rapid and high-precision active learning algorithm: A case study of the prediction of the mechanical properties of MAX phase crystals[J]. Chinese Journal of Engineering. doi: 10.13374/j.issn2095-9389.2023.03.15.001
    Citation: LI Na, ZONG Tianxin, WANG Luning. Development of a novel rapid and high-precision active learning algorithm: A case study of the prediction of the mechanical properties of MAX phase crystals[J]. Chinese Journal of Engineering. doi: 10.13374/j.issn2095-9389.2023.03.15.001

    新型快速高精度主動學習算法的開發:以MAX相晶體的材料力學性能預測為例

    doi: 10.13374/j.issn2095-9389.2023.03.15.001
    基金項目: 國家自然科學基金資助項目(52071028,52231010)
    詳細信息
      通訊作者:

      E-mail: lina@ustb.edu.cn

    • 中圖分類號: TG142.71

    Development of a novel rapid and high-precision active learning algorithm: A case study of the prediction of the mechanical properties of MAX phase crystals

    More Information
    • 摘要: 近年來,MAX相晶體由于獨特的納米層狀的晶體結構具有自潤滑、高韌性、導電性等優點,成為全球的研究熱點之一. 其中M2AX相晶體兼具陶瓷和金屬化合物的性能,同時具有抗熱震性、高韌性、導電性和導熱性,但是由于該類材料的單相樣品實驗制備比較困難,從而限制了其發展. 主動學習是一種利用少量標記樣本可以達到較好預測性能的機器學習方法,本文將高效全局優化算法與殘差主動學習回歸算法相結合,提出了一種改良的主動學習選擇策略RS-EGO,基于169個M2AX相晶體的數據集,對M2AX相晶體的體模量、楊氏模量與剪切模量進行建模與預測尋優,通過計算模擬的方式來探索材料性能從而減少無效的驗證實驗. 結果發現, RS-EGO在快速尋找最優值的同時具有較好的預測能力,綜合性能要優于兩種原始選擇策略,也更適合樣本量較少的材料性能預測問題,同時選擇不同的結合參數會影響改良算法的優化方向. 通過在兩個公開數據集上運用改良算法證明了其有效性,并給出了結合參數的選擇,設計不同結合參數下的模型實驗,進一步探究不同參數對模型優化方向的影響.

       

    • 圖  1  改良選擇策略RS-EGO的算法流程

      Figure  1.  Schematic of the improved selection strategy in the RS-EGO algorithm

      圖  2  最初16個特征的皮爾遜相關熱圖與R2隨特征數量變化的點線圖

      Figure  2.  Pearson correlation heat map of the initial 16 features and dotted line map of R2 with the number of features

      圖  3  機器學習預測結果R2值與RMSE值組合圖. (a) K指標; (b) G指標; (c) E指標

      Figure  3.  R2 and RMSE values for the machine learning model: (a) K target; (b) G target; (c) E target

      圖  4  K的最小值 (a~c) 、E的最小值(d~f)、G的最小值(g~i)為目標的ALR采樣結果. (a, d, g) RMSE值;(b, e, h)R2; (c, f, i)機會成本值

      Figure  4.  Active learning regression sampling results with aiming for the minimum value of K (a–c), E (d–f), and G (g–i): (a, d, g) RMSE value; (b, e, h) R2 value; (c, f, i) opportunity cost

      圖  5  ALR采樣結果(K的最小值為目標). (a) R2值; (b) RMSE值; (c)機會成本值

      Figure  5.  Active learning regression sampling results (aiming for minimum value of K): (a) R2 value; (b) RMSE value; (c) opportunity cost

      圖  6  主動學習迭代至第20輪時不同選擇策略的采樣結果. (a) EGO; (b) RSAL; (c) RS-EGO (2∶1)

      Figure  6.  Sampling results of different selection strategies during active learning iteration to round 20: (a) EGO; (b) RSAL; (c) RS-EGO (2∶1)

      圖  7  基于Concrete-CS((a~c))和Indirect (d~f)兩個數據集ALR的采樣結果(以響應變量的最小值為目標). (a, d) RMSE值; (b, e) R2值; (c, f)機會成本值

      Figure  7.  Active learning regression sampling results (aiming for the minimum value of the response variable) based on Concrete-CS ((a–c)) and Indirect (d–f) datasets: (a, d) RMSE value; (b, e) R2 value; (c, f) opportunity cost

      表  1  M2AX相數據集的描述性統計

      Table  1.   Descriptive statistics of the M2AX phase data set

      Features nameFeature descriptionMinimumMaximumAverageStandard deviation
      MsM-atom s-orbital radii1.3601.5931.4920.075
      MpM-atom p-orbital radii0.4160.6170.5410.074
      MdM-atom d-orbital radii0.4270.8290.6560.152
      AsA-atom s-orbital radii0.4451.0930.9030.171
      ApA-atom p-orbital radii0.8081.3821.1500.167
      XsX-atom s-orbital radii0.5210.6200.5710.050
      XpX-atom p-orbital radii0.4880.5960.5420.054
      TB_DenTotal bond order density0.0190.0450.0310.007
      M_M_BOM-M bond order03.6431.5410.699
      M_A_BOM-A bond order2.9028.1294.9600.932
      M_X_BOM-X bond order5.3829.4547.3371.135
      A_A_BOA-A bond order01.7690.6110.564
      M_Q*M-atom charge transfer–1.007–0.410–0.7310.134
      A_Q*A-atom charge transfer0.0990.9580.5790.175
      X_Q*X-atom charge transfer0.6781.1760.8830.106
      N_E(0)Fermi-level0.66810.5064.1321.951
      KBulk modulus79.171263.124165.02640.604
      GShear modulus10.963151.00388.98925.938
      EYoung’s modulus31.591376.709224.46862.064
      下載: 導出CSV

      表  2  特征重要性排序(需比較的特征組已加粗)

      Table  2.   Feature importance ranking (Feature groups to be compared are in bold)

      FeaturesK_FscoreG_FscoreE_FscoreP_Fscore
      Ms1010910
      Mp11110
      Md15151514
      As8788
      Ap14131313
      Xs13141414
      Xp15151514
      TB_Den5527
      M_M_BO2351
      M_A_BO4634
      M_X_BO3252
      A_A_BO6879
      M_Q*11121012
      A_Q*129116
      X_Q*911115
      N_E(0)7443
      下載: 導出CSV

      表  3  模型預測的平均AUC結果,以粗體顯示最大最小值

      Table  3.   Average AUC results for model prediction with the maximum and minimum in bold

      Evaluation indicator EGO RSAL RS-EGO (2∶1) RS-EGO (1∶1) RS-EGO (1∶2)
      AUC-RMSE 1056.3973 1038.6413 1041.9258 1053.9733 1053.3511
      AUC-R2 45.8378 47.8767 47.0105 45.9895 45.9657
      下載: 導出CSV

      表  4  不同目標的平均AUC值排序

      Table  4.   Ranking of the average AUC values of different targets

      AUC values Target EGO RSAL RS-EGO (2∶1) RS-EGO (1∶1) RS-EGO (1∶2)
      AUC-RMSE max_K 5 3 2 1 4
      min_K 5 1 2 4 3
      max_G 5 1 2 3 4
      min_G 4 5 3 1 2
      max_E 4 5 1 2 3
      min_E 1 5 4 3 2
      RSR 0.800 0.667 0.467 0.467 0.600
      AUC-R2 max_K 5 3 2 1 4
      min_K 5 1 2 3 4
      max_G 5 1 2 3 4
      min_G 4 5 3 1 2
      max_E 5 2 1 3 4
      min_E 1 5 4 3 2
      RSR 0.833 0.567 0.467 0.467 0.667
      AUC-Oppo max_K 2 5 4 3 1
      min_K 1 5 4 3 2
      max_G 5 2 1 3 4
      min_G 4 1 5 2 3
      max_E 5 1 2 3 4
      min_E 2 1 5 3 4
      RSR 0.633 0.5 0.7 0.567 0.6
      下載: 導出CSV

      表  5  數據集的基本信息

      Table  5.   Basic information about the dataset

      Dataset Source Sample size Original feature quantity Final feature quantity
      Concrete-CS UCI 103 7 7
      Indirect Journal 1836 15 15
      下載: 導出CSV

      表  6  模型預測的平均AUC結果

      Table  6.   Average AUC results for model prediction and optimization

      Dataset Evaluation indicator EGO RSAL RS-EGO (2∶1) RS-EGO (1∶1) RS-EGO (1∶2)
      Concrete-CSAUC-RMSE231.1336218.2656220.8041230.6000231.8836
      AUC-R254.184955.458055.213954.240654.1076
      AUC-OPPO0.037590.062810.059790.038050.03674
      IndirectAUC-RMSE8.26228.26307.86148.05738.2748
      AUC-R258.508058.544359.274458.913558.4946
      AUC-OPPO0.037210.066050.058040.038650.03846
      下載: 導出CSV

      表  7  模型預測與尋優的平均AUC結果

      Table  7.   Average AUC results for model prediction and optimization

      Dataset Evaluation indicator RS-EGO (3∶1) RS-EGO (2∶1) RS-EGO (1∶1) RS-EGO (1∶2) RS-EGO (1∶3)
      Concrete-CSAUC-RMSE218.9119220.8041230.6000231.8836231.8504
      AUC-R255.412655.213954.240654.107654.1073
      AUC-OPPO0.056830.059790.038050.036740.03683
      IndirectAUC-RMSE7.84827.86148.05738.27488.3295
      AUC-R259.297259.274458.913558.494658.3809
      AUC-OPPO0.058840.058040.038650.038460.03799
      下載: 導出CSV
      中文字幕在线观看
    • [1] Zeng X Q, Xie T, Ying T, et al. Data-driven designing of microstructures and properties of magnesium alloys. Mater China, 2020, 39(1): 1 doi: 10.7502/j.issn.1674-3962.201911007

      曾小勤, 謝天, 應韜, 等. 數據驅動的鎂合金結構與性能設計. 中國材料進展, 2020, 39(1):1 doi: 10.7502/j.issn.1674-3962.201911007
      [2] Liu X J, Chen Y C, Lu Y, et al. Present research situation and prospect of multi-scale design in novel co-based superalloys: A review. Acta Metall Sin, 2020, 56(1): 1 doi: 10.11900/0412.1961.2019.00159

      劉興軍, 陳悅超, 盧勇, 等. 新型鈷基高溫合金多尺度設計的研究現狀與展望. 金屬學報, 2020, 56(1):1 doi: 10.11900/0412.1961.2019.00159
      [3] Krishna Y V, Jaiswal U K, Rahul M R. Machine learning approach to predict new multiphase high entropy alloys. Scr Mater, 2021, 197: 113804 doi: 10.1016/j.scriptamat.2021.113804
      [4] Qiao L, Ramanujan R V, Zhu J C. Machine learning accelerated design of a family of AlxCrFeNi medium entropy alloys with superior high temperature mechanical and oxidation properties. Corros Sci, 2023, 211: 110805 doi: 10.1016/j.corsci.2022.110805
      [5] Rao Z Y, Tung P Y, Xie R W, et al. Machine learning-enabled high-entropy alloy discovery. Science, 2022, 378(6615): 78 doi: 10.1126/science.abo4940
      [6] Qin Z J, Wang Z, Wang Y Q, et al. Phase prediction of Ni-base superalloys via high-throughput experiments and machine learning. Mater Res Lett, 2021, 9(1): 32 doi: 10.1080/21663831.2020.1815093
      [7] Zeng Y Z, Man M R, Bai K W, et al. Explore the full temperature-composition space of 20 quinary CCAs for FCC and BCC single-phases by an iterative machine learning + CALPHAD method. Acta Mater, 2022, 231: 117865 doi: 10.1016/j.actamat.2022.117865
      [8] Su Y J, Fu H D, Bai Y, et al. Progress in materials genome engineering in China. Acta Metall Sin, 2020, 56(10): 1313 doi: 10.11900/0412.1961.2020.00199

      宿彥京, 付華棟, 白洋, 等. 中國材料基因工程研究進展. 金屬學報, 2020, 56(10):1313 doi: 10.11900/0412.1961.2020.00199
      [9] Chen Z Y, Jing F W, Li J, et al. Recognition algorithm of hot-rolled strip steel water beam mark based on a semisupervised learning model of an improved denoising autoencoder. Chin J Eng, 2022, 44(8): 1338

      陳兆宇, 荊豐偉, 李杰, 等. 基于改進降噪自編碼器半監督學習模型的熱軋帶鋼水梁印識別算法. 工程科學學報, 2022, 44(8):1338
      [10] Lookman T, Balachandran P V, Xue D Z, et al. Statistical inference and adaptive design for materials discovery. Curr Opin Solid State Mater Sci, 2017, 21(3): 121 doi: 10.1016/j.cossms.2016.10.002
      [11] Li Z X, Zhang N, Xiong B, et al. Materials science database in material research and development: Recent applications and prospects. Front Data Comput, 2020, 2(2): 78

      李姿昕, 張能, 熊斌, 等. 材料科學數據庫在材料研發中的應用與展望. 數據與計算發展前沿, 2020, 2(2):78
      [12] Zhao W C, Zheng C, Xiao B, et al. Composition refinement of 6061 aluminum alloy using active machine learning model based on Bayesian optimization sampling. Acta Metall Sin, 2021, 57(6): 797

      趙婉辰, 鄭晨, 肖斌, 等. 基于Bayesian采樣主動機器學習模型的6061鋁合金成分精細優化. 金屬學報, 2021, 57(6):797
      [13] Bassman Oftelie L, Rajak P, Kalia R K, et al. Active learning for accelerated design of layered materials. NPJ Comput Mater, 2018, 4(1): 74 doi: 10.1038/s41524-018-0129-0
      [14] Gubaev K, Podryabinkin E V, Hart G L W, et al. Accelerating high-throughput searches for new alloys with active learning of interatomic potentials. Comput Mater Sci, 2019, 156: 148 doi: 10.1016/j.commatsci.2018.09.031
      [15] Jones D R, Schonlau M, Welch W J. Efficient global optimization of expensive black-box functions. J Glob Optim, 1998, 13(4): 455 doi: 10.1023/A:1008306431147
      [16] Douak F, Melgani F, Benoudjit N. Kernel ridge regression with active learning for wind speed prediction. Appl Energy, 2013, 103: 328 doi: 10.1016/j.apenergy.2012.09.055
      [17] Barsoum M W. MAX Phases: Properties of Machinable Ternary Carbides and Nitrides. Hoboken: John Wiley & Sons, 2013
      [18] Aryal S, Sakidja R, Barsoum M W, et al. A genomic approach to the stability, elastic, and electronic properties of the MAX phases. Phys Status Solidi B, 2014, 251(8): 1480 doi: 10.1002/pssb.201451226
      [19] Cover M F, Warschkow O, Bilek M M, et al. A comprehensive survey of M2AX phase elastic properties. J Phys: Condens Matter, 2009, 21(30): 305403 doi: 10.1088/0953-8984/21/30/305403
      [20] Balachandran P V, Xue D Z, Theiler J, et al. Adaptive strategies for materials design using uncertainties. Sci Rep, 2016, 6: 19660 doi: 10.1038/srep19660
      [21] RayChaudhuri T, Hamey L G C. Minimisation of data collection by active learning//Proceedings of ICNN'95-International Conference on Neural Networks. Perth, 1995: 1338
      [22] Cai W B, Zhang Y, Zhou J. Maximizing expected model change for active learning in regression//2013 IEEE 13th International Conference on Data Mining. Dallas, 2013: 51
      [23] Sugiyama M, Nakajima S. Pool-based active learning in approximate linear regression. Mach Learn, 2009, 75(3): 249 doi: 10.1007/s10994-009-5100-3
      [24] Wu D R, Lin C T, Huang J. Active learning for regression using greedy sampling. Inf Sci, 2019, 474: 90 doi: 10.1016/j.ins.2018.09.060
      [25] Powell W B, Ryzhov I O. Optimal Learning. Hoboken: John Wiley & Sons, 2012
    • 加載中
    圖(7) / 表(7)
    計量
    • 文章訪問數:  128
    • HTML全文瀏覽量:  15
    • PDF下載量:  17
    • 被引次數: 0
    出版歷程
    • 收稿日期:  2023-03-15
    • 網絡出版日期:  2023-05-06

    目錄

      /

      返回文章
      返回