• Volume 39 Issue 6
    Jun.  2017
    Turn off MathJax
    Article Contents
    JIAO Ke-xin, ZHANG Jian-liang, LIU Zheng-jian, LIU Yan-xiang, LIANG Li-sheng, JIA Guo-dong. Analysis of the phase of the solid iron layer in blast furnace hearth[J]. Chinese Journal of Engineering, 2017, 39(6): 838-845. doi: 10.13374/j.issn2095-9389.2017.06.004
    Citation: JIAO Ke-xin, ZHANG Jian-liang, LIU Zheng-jian, LIU Yan-xiang, LIANG Li-sheng, JIA Guo-dong. Analysis of the phase of the solid iron layer in blast furnace hearth[J]. Chinese Journal of Engineering, 2017, 39(6): 838-845. doi: 10.13374/j.issn2095-9389.2017.06.004

    Analysis of the phase of the solid iron layer in blast furnace hearth

    doi: 10.13374/j.issn2095-9389.2017.06.004
    • Received Date: 2016-08-10
    • The solidified iron layer in blast furnace (BF) hearth was estimated based on the blast furnace damage. The phase compositions of the solidified iron layer were studied using scanning electron microscope and energy dispersive spectrometer. The temperature and proportions of graphite precipitation were calculated by using the Thermol-calc software and the TCFE8 database. Finally, the formation of the solidified iron layer was examined. The results suggest that the solidified iron comprises iron and graphite. The temperature of the graphite precipitation is affected by the composition of the hot metal, and it is much higher than the solidification temperature of the hot metal. The proportions of precipitated graphite are affected by the C and Si in the hot metal, whereas the precipitated graphite increases the viscosity of the hot metal by 11.9%. The graphite precipitates at the interface with the Fe-refractory at lower temperature than that of the graphite saturation, which allows the C migration from the hot metal to the refractory interface.

       

    • loading
    • [1]
      Liu Z J, Zhang J L, Yang T J. Low carbon operation of superlarge blast furnaces in China. ISIJ Int, 2015, 55(6):1146
      [2]
      Jiao K X, Zhang J L, Liu Z J, et al. Properties and application of carbon composite brick for blast furnace hearth. J Min Metall Sect B-Metall, 2015, 51(2):143
      [3]
      Li Y W, Li Y W, Sang S B, et al. Preparation of ceramic-bonded carbon block for blast furnace. Metall Mater Trans A, 2014, 45(1):477
      [4]
      Liu Z J, Zhang J L, Zuo H B, et al. Recent progress on long service life design of Chinese blast furnace hearth. ISIJ Int, 2012, 52(10):1713
      [8]
      Takatani K, Inada T, Takata K. Mathematical model for transient erosion process of blast furnace hearth. ISIJ Int, 2001, 41(10):1139
      [9]
      Zhao H B, Cheng S S, Zhao M G. Analysis of all-carbon brick bottom and ceramic cup synthetic hearth bottom. J Iron Steel Res Int, 2007, 14(2):6
      [10]
      Zhang Y, Deshpande R, Huang D, et al. A methodology for blast furnace hearth inner profile analysis. J Heat Transfer, 2007, 129(12):1729
      [11]
      Inada T, Kasai A, Nakano K, et al. Dissection investigation of blast furnace hearth-Kokura No. 2 blast furnace (2ed campaign). ISIJ Int, 2009, 49(4):470
      [12]
      Shinotake A, Nakamura H, Yadoumaru N, et al. Investigation of blast furnace hearth sidewall erosion by core sample analysis and consideration of campaign operation. ISIJ Int, 2003, 43(3):321
      [13]
      Komiyama K M, Guo B Y, Zughbi H, et al. Numerical analysis of titanium compounds in blast furnace hearth during titania addition. Steel Res Int, 2015, 86(6):592
      [15]
      Jiao K X, Zhang J L, Liu Z J, et al. Formation mechanism of the graphite-rich protective layer in blast furnace hearth. Int J Miner Metall Mater, 2016, 23(1):16
      [16]
      Zhu R L, Sun G J, Lin C C. Longevity technology research and practice of Baosteel No. 3 BF//Proceedings of 7th International Conference on the Science and Technology of Ironmaking. Cleveland, 2015:298
      [18]
      Nakamoto M, Miyabayashi Y, Holappa L, et al. A model for estimating viscosities of aluminosilicate melts containing alkali oxides. ISIJ Int, 2007, 47(10):1409
      [19]
      Wu L S. Study on Some Phenomena of Slag in Steelmaking Process[Dissertation]. Sweden:KTH Royal Institute of Technology, 2011
      [20]
      Takahira N. Influence of enthalpy changes on the temperature dependency of the viscosity of pure liquid metals. ISIJ Int, 2015, 55(10):2247
    • 加載中

    Catalog

      通訊作者: 陳斌, bchen63@163.com
      • 1. 

        沈陽化工大學材料科學與工程學院 沈陽 110142

      1. 本站搜索
      2. 百度學術搜索
      3. 萬方數據庫搜索
      4. CNKI搜索
      Article views (777) PDF downloads(23) Cited by()
      Proportional views
      Related

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return
      中文字幕在线观看