• Volume 39 Issue 12
    Dec.  2017
    Turn off MathJax
    Article Contents
    GUO Qi, WANG Zhi-cheng, XU Xiao-guang, JIANG Yong. Effect of strain on the magnetoelectric property of flexible electronics devices[J]. Chinese Journal of Engineering, 2017, 39(12): 1775-1782. doi: 10.13374/j.issn2095-9389.2017.12.001
    Citation: GUO Qi, WANG Zhi-cheng, XU Xiao-guang, JIANG Yong. Effect of strain on the magnetoelectric property of flexible electronics devices[J]. Chinese Journal of Engineering, 2017, 39(12): 1775-1782. doi: 10.13374/j.issn2095-9389.2017.12.001

    Effect of strain on the magnetoelectric property of flexible electronics devices

    doi: 10.13374/j.issn2095-9389.2017.12.001
    • Received Date: 2017-07-12
    • Flexible electronic devices have attracted great interest owing to the advantages of flexible substrates as well as its arbitrary surface geometries, which may be one key branch of next-generation electronic devices, including paper-like electronic displays, light-emitting diodes, biointegrated medical devices, and solar cells. In recent years, some researchers have combined flexible techniques with spintronics to explore the effect of strain on magnetoelectric heterojunctions grown on flexible substrates and to control the magnetic and electric properties by changing the curvature of the substrate. These studies pave the path for the designing electronic devices, including magnetic storage devices, magnetic sensors, and non-volatile resistance memory.

       

    • loading
    • [1]
      Wolf S A, Awschalom D D, Buhrman R A, et al. Spintronics:a spin-based electronics vision for the future. Science, 2001, 294(5546):1488
      [3]
      Grünberg P, Schreiber R, Pang Y, et al. Layered magnetic structures:evidence for antiferromagnetic coupling of Fe layers across Cr interlayers. Phys Rev Lett, 1986, 57(19):2442
      [4]
      Julliere M. Tunneling between ferromagnetic films. Phys Lett A, 1975, 54(3):225
      [5]
      Myers E B, Ralph D C, Katine J A, et al. Current-induced switching of domains in magnetic multilayer devices. Science, 1999, 285(5429):867
      [6]
      Matsukura F, Tokura Y, Ohno H. Control of magnetism by electric fields. Nat Nanotechnol, 2015, 10:209
      [7]
      Ward T Z, Budai J D, Gai Z, et al. Elastically driven anisotropic percolation in electronic phase-separated manganites. Nat Phys, 2009, 5(12):885
      [8]
      Zeches R J, Rossell M D, Zhang J X, et al. A strain-driven morphotropic phase boundary in BiFeO3. Science, 2009, 326(5955):977
      [9]
      Cao J, Ertekin E, Srinivasan V, et al. Strain engineering and one-dimensional organization of metal-insulator domains in singlecrystal vanadium dioxide beams. Nanotechnology, 2009, 4:732
      [10]
      Haeni J H, Irvin P, Chang W, et al. Room-temperature ferroelectricity in strained SrTiO3. Nature, 2004, 430:758
      [11]
      Choi K J, Biegalski M, Li Y L, et al. Enhancement of ferroelectricity in strained BaTiO3 thin films. Science, 2004, 306(5698):1005
      [12]
      Rabe K M. Theoretical investigations of epitaxial strain effects in ferroelectric oxide thin films and superlattices. Curr Opin Solid State Mater Sci, 2005, 9(3):122
      [13]
      Christen H M, Kim D H, Rouleau C M. Interfaces in perovskite heterostructures. Appl Phys A, 2008, 93(3):807
      [14]
      Duan C G, Sabiryanov R F, Liu J J, et al. Strain induced halfmetal to semiconductor transition in GdN. Phys Rev Lett, 2005, 94(23):237201
      [15]
      Chisholm M F, Pennycook S J. Structural origin of reduced critical currents at YBa2Cu3O7-δ grain boundaries. Nature, 1991, 351(6321):47
      [16]
      Li H, Sun J R, Wong H K. Enhanced low-field magnetoresistance in La2/3Ca1/3MnO3/Pr2/3Ca1/3MnO3 superlattices. Appl Phys Let, 2002, 80(4):628
      [17]
      Hu G, Choi J H, Eom C B, et al. Structural tuning of the magnetic behavior in spinel-structure ferrite thin films. Phys Rev B, 2000, 62(2):R779
      [18]
      Ahart M, Somayazulu M, Cohen R E, et al. Origin of morphotropic phase boundaries in ferroelectrics. Nature, 2008, 451:545
      [19]
      Ohno H, Chiba D, Matsukura F, et al. Electric-field control of ferromagnetism. Nature, 2000, 408:944
      [20]
      Rogers J A, Bao Z N, Baldwin K, et al. Paper-like electronic displays:large-area rubber-stamped plastic sheets of electronics and microencapsulated electrophoretic inks. Proc Natl Acad Sci USA, 2001, 98(9):4835
      [21]
      Feng C, Hu D, Gong K, et al. Thickness-dependent electronic structure modulation of ferromagnetic films on shape memory alloy substrates based on a pure strain effect. Appl Phys Lett, 2016,109(21), 212401
      [23]
      Kim S J, Lee J S. Flexible organic transistor memory devices. Nano Lett, 2010, 10(8):2884
      [24]
      Baeg K J, Khim D, Kim J, et al. High-performance top-gated organic field-effect transistor memory using electrets for monolithic printed flexible NAND flash memory. Adv Funct Mater, 2012, 22(14):2915
      [25]
      Gustafsson G, Cao Y, Treacy G M, et al. Flexible light-emitting diodes made from soluble conducting polymers. Nature, 1992, 357(6378):477
      [26]
      Klauk H. Plastic electronics:remotely powered by printing. Nat Mater, 2007, 6(6):397
      [27]
      Spaldin N A, Fiebig M. The renaissance of magnetoelectric multiferroics. Science, 2005, 309(5733):391
      [28]
      Taniyama T. Electric-field control of magnetism via strain transfer across ferromagnetic/ferroelectric interfaces. J Phys Condens Matter, 2015, 27(50):504001
      [29]
      Schmid H. Some symmetry aspects of ferroics and single phase multiferroics. J Phys Condens Matter, 2008, 20(43):434201
      [30]
      Schmid H. On a magnetoelectric classification of materials. Int J Magn, 1973, 4(4):337
      [31]
      Van Aken B B, Palstra T T M, Filippetti A, et al. The origin of ferroelectricity in magnetoelectric YMnO3. Nat Mater, 2004, 3:164
      [32]
      Janssen T. Dynamics of (anti) ferromagnetic/electric domain walls. Ferroelectrics, 1994, 162(1):265
      [33]
      Srinivasan G, Rasmussen E T, Hayes R. Magnetoelectric effects in ferrite-lead zirconate titanate layered composites:the influence of zinc substitution in ferrites. Phys Rev B, 2003, 67:014418
      [34]
      Srinivasan G, Rasmussen E T, Levin B J, et al. Magnetoelectric effects in bilayer and multilayers of magnetostrictive and piezoelectric perovskite oxides. Phys Rev B, 2002, 65:134402
      [35]
      Shastry S, Srinivasan G, Bichurin M I, et al. Microwave magnetoelectric effects in single crystal bilayers of yttrium iron garnet and lead magnesium niobate-lead titanate. Phys Rev B, 2004, 70:064416
      [36]
      Laletsin U, Padubnaya N, Srinivasan G, et al. Frequency dependence of magnetoelectric interactions in layered structures of ferromagnetic alloys and piezoelectric oxides. Appl Phys A, 2004, 78(1):33
      [37]
      Tang Z H, Ni H, Lu B, et al. Thickness dependence of magnetic anisotropy and domains in amorphous Co40Fe40B20 thin films grown on PET flexible substrates. J Magn Magn Mater, 2017, 426:444
      [38]
      Dai G H, Zhan Q F, Liu Y W, et al. Mechanically tunable magnetic properties of Fe81Ga19 films grown on flexible substrates. Appl Phys Lett, 2012, 100(12):122407
      [39]
      Barraud C, Deranlot C, Seneora P, et al. Magnetoresistance in magnetic tunnel junctions grown on flexible organic substrates. Appl Phys Lett, 2010, 96:072502
      [40]
      Chen J Y, Lau Y C, Coey J M D, et al. High performance MgObarrier magnetic tunnel junctions for flexible and wearable spintronic applications. Sci Rep, 2017, 7:42001
      [41]
      Guo Q, Xu G X, Zhang Q Q, et al. Strain-controlled giant magnetoresistance of a spin valve grown on a flexible substrate. RSC Adv, 2016, 6:88090
      [42]
      Karnaushenko D, Makarov D, Stöber M, et al. High-performance magnetic sensorics for printable and flexible electronics. Adv Mater, 2015, 27(5):880
      [43]
      Zhang X S, Zhan Q F, Dai G H, et al. Effect of mechanical strain on magnetic properties of flexible exchange biased FeGa/IrMn heterostructures. Appl Phys Lett, 2013, 102(2):022412
      [44]
      Che W R, Xiao X F, Sun N Y, et al. Critical anomalous Hall behavior in Pt/Co/Pt trilayers grown on paper with perpendicular magnetic anisotropy. Appl Phys Lett, 2014, 104(26):262404
    • 加載中

    Catalog

      通訊作者: 陳斌, bchen63@163.com
      • 1. 

        沈陽化工大學材料科學與工程學院 沈陽 110142

      1. 本站搜索
      2. 百度學術搜索
      3. 萬方數據庫搜索
      4. CNKI搜索
      Article views (719) PDF downloads(31) Cited by()
      Proportional views
      Related

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return
      中文字幕在线观看