Citation: | ZHU Jin-yang, ZHENG Zi-yi, XU Li-ning, LU Min-xu. Influence of KBr concentration on corrosion behaviors of 13Cr stainless steels under high temperature and high pressure[J]. Chinese Journal of Engineering, 2019, 41(5): 625-632. doi: 10.13374/j.issn2095-9389.2019.05.009 |
[1] |
張國超, 林冠發, 孫育祿, 等. 13Cr不銹鋼腐蝕性能的研究現狀與進展. 全面腐蝕控制, 2011, 25(4): 16 doi: 10.3969/j.issn.1008-7818.2011.04.004
Zhang G C, Lin G F, Sun Y L, et al. Research on corrosion resistance of 13Cr stainless steel. Total Corros Control, 2011, 25(4): 16 doi: 10.3969/j.issn.1008-7818.2011.04.004
|
[2] |
褚武揚, 王燕斌, 關永生, 等. 抗H2S石油套管鋼的設計. 金屬學報, 1998, 31(10): 1073 doi: 10.3321/j.issn:0412-1961.1998.10.012
Chu W Y, Wang Y B, Guan Y S, et al. Design of API C90 tubular steel. Acta Metall Sinica, 1998, 31(10): 1073 doi: 10.3321/j.issn:0412-1961.1998.10.012
|
[3] |
呂祥鴻, 趙國仙, 王宇, 等. 超級13Cr馬氏體不銹鋼抗SSC性能研究. 材料工程, 2011(2): 17 doi: 10.3969/j.issn.1001-4381.2011.02.004
Lü X H, Zhao G X, Wang Y, et al. SSC resistance of super 13Cr martensitic stainless steel. J Mater Eng, 2011(2): 17 doi: 10.3969/j.issn.1001-4381.2011.02.004
|
[4] |
陳堯, 白真權. 13Cr和N80鋼高溫高壓抗腐蝕性能比較. 石油與天然氣化工, 2007, 36(3): 239 doi: 10.3969/j.issn.1007-3426.2007.03.016
Chen Y, Bai Z Q. Compare of CO2 corrosion resistance of 13Cr and N80 steel under high temperature and high pressure. Chem Eng Oil Gas, 2007, 36(3): 239 doi: 10.3969/j.issn.1007-3426.2007.03.016
|
[5] |
蔡亮. 環保型完井液的研究與應用[學位論文]. 大慶: 大慶石油學院, 2009
Cai L. The Research and Application of Environmentally Friendly Completion Fluid[Dissertation]. Daqing: Daqing Petroleum Institute, 2009
|
[6] |
Liu Y, Xu L N, Zhu J Y, et al. Pitting corrosion of 13Cr steel in aerated brine completion fluids. Mater Corros, 2014, 65(11): 1096 doi: 10.1002/maco.201307489
|
[7] |
Liu Y, Xu L N, Lu M X, et al. Corrosion mechanism of 13Cr stainless steel in completion fluid of high temperature and high concentration bromine salt. Appl Surf Sci, 2014, 314: 768 doi: 10.1016/j.apsusc.2014.07.067
|
[8] |
Yin Z F, Wang X Z, Liu L, et al. Characterization of corrosion product layers from CO2 corrosion of 13Cr stainless steel in simulated oilfield solution. J Mater Eng Perform, 2011, 20(7): 1330 doi: 10.1007/s11665-010-9769-z
|
[9] |
呂祥鴻, 趙國仙, 樊治海, 等. 高溫高壓下Cl-濃度、CO2分壓對13Cr不銹鋼點蝕的影響. 材料保護, 2004, 37(6): 34 doi: 10.3969/j.issn.1001-1560.2004.06.013
Lü X H, Zhao G X, Fan Z H, et al. Effects of CI- concentration and CO2 partial pressure on pitting behavior of 13Cr stainless steel under high temperature and high pressure. Mater Prot, 2004, 37(6): 34 doi: 10.3969/j.issn.1001-1560.2004.06.013
|
[10] |
侯贊, 周慶軍, 王起江, 等. 13Cr系列不銹鋼在模擬井下介質中的CO2腐蝕研究. 中國腐蝕與防護學報, 2012, 32(4): 300 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGFF201204006.htm
Hou Z, Zhou Q J, Wang Q J, et al. Investigation on carbon dioxide corrosion performance of various 13Cr steels in simulated stratum water. J Chin Soc Corros Prot, 2012, 32(4): 300 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGFF201204006.htm
|
[11] |
Zhao Y, Li X P, Zhang C, et al. Investigation of the rotation speed on corrosion behavior of HP-13Cr stainless steel in the extremely aggressive oilfield environment by using the rotating cage test. Corros Sci, 2018, 145: 307 doi: 10.1016/j.corsci.2018.10.011
|
[12] |
Lei X W, Wang H Y, Mao F X, et al. Electrochemical behaviour of martensitic stainless steel after immersion in a H2S-saturated solution. Corros Sci, 2018, 131: 164 doi: 10.1016/j.corsci.2017.10.015
|
[13] |
Chen Z Y, Li L J, Zhang G A, et al. Inhibition effect of propargyl alcohol on the stress corrosion cracking of super 13Cr steel in a completion fluid. Corros Sci, 2013, 69: 205 doi: 10.1016/j.corsci.2012.12.004
|
[14] |
ASTM International, United States. ASTM G1-03 Standard Practice for Preparing, Cleaning, and Evaluating Corrosion Test Specimens. West Conshohocken: ASTM International, 2011
|
[15] |
NACE International, United States. NACE PR0775-05 Preparation, Installation, Analysis, and Interpretation of Corrosion Coupons in Oilfield Operations. Houston: ASTM International, 2005
|
[16] |
Si J J, Wu Y D, Wang T, et al. Composition-controlled active-passive transition and corrosion behavior of Fe-Cr(Mo)-Zr-B bulk amorphous steels. Appl Surf Sci, 2018, 445: 496 doi: 10.1016/j.apsusc.2018.03.186
|
[17] |
Moon J, Ha H Y, Park S J, et al. Effect of Mo and Cr additions on the microstructure, mechanical properties and pitting corrosion resistance of austenitic Fe-30Mn-10.5Al-1.1C lightweight steels. J Alloys Compd, 2019, 775: 1136 doi: 10.1016/j.jallcom.2018.10.253
|
[18] |
Guo F F, Dong G N, Dong L S. High temperature passive film on the surface of Co-Cr-Mo alloy and its tribological properties. Appl Surf Sci, 2014, 314: 777 doi: 10.1016/j.apsusc.2014.07.086
|