• Volume 41 Issue 5
    May  2019
    Turn off MathJax
    Article Contents
    ZHU Jin-yang, ZHENG Zi-yi, XU Li-ning, LU Min-xu. Influence of KBr concentration on corrosion behaviors of 13Cr stainless steels under high temperature and high pressure[J]. Chinese Journal of Engineering, 2019, 41(5): 625-632. doi: 10.13374/j.issn2095-9389.2019.05.009
    Citation: ZHU Jin-yang, ZHENG Zi-yi, XU Li-ning, LU Min-xu. Influence of KBr concentration on corrosion behaviors of 13Cr stainless steels under high temperature and high pressure[J]. Chinese Journal of Engineering, 2019, 41(5): 625-632. doi: 10.13374/j.issn2095-9389.2019.05.009

    Influence of KBr concentration on corrosion behaviors of 13Cr stainless steels under high temperature and high pressure

    doi: 10.13374/j.issn2095-9389.2019.05.009
    More Information
    • Corresponding author: ZHU Jin-yang, E-mail: zhujinyang@ustb.edu.cn
    • Received Date: 2018-12-24
    • Publish Date: 2019-05-01
    • Recently, the use of bromine completion fluids in the oil and gas industry has caused numerous severe corrosion problems of the oil well casing and tubing, particularly the localized corrosion failure. Bromine completion fluids, such as KBr solution, are highly corrosive to steels. Even if the stainless steel is subjected to a high concentration of bromate under high temperature and pressure, it can still experience severe corrosion failure risks. In this study, the influence of KBr concentrations on corrosion behaviors of plain and super 13Cr steels under high temperature and pressure was investigated by corrosion simulation, scanning electron microscopy (SEM) observation, and electrochemical measurements. The results show that both plain and super 13Cr steels exhibit good corrosion resistance in KBr solutions with various concentrations regarding average corrosion rate, which is either mild or moderate. However, the local corrosion rates of plain and super 13Cr steels are serious or extremely serious. With the increase of bromide concentration, the free corrosion and pitting potentials of plain 13Cr steel significantly decrease. Both the average and local corrosion rates increase significantly. For super 13Cr steel, the pitting potential decreases, whereas the free potential remains relatively stable. The average corrosion rate of super 13Cr steel shows a lower scope of change than the local corrosion rate, which increases significantly and indicates that super 13Cr steel is much more corrosion resistant than plain 13Cr steel, but its local corrosion sensitivity is still high. Laser scanning confocal microscopy (LSCM) results show that both plain and super 13Cr steels exhibit serious pitting corrosion in a KBr solution with a concentration of 1.40 g·cm-3, and this is related to the aggressiveness of Br-. Compared with plain 13Cr steel, super 13Cr steel shows a lower pitting sensitivity; however, its pitting corrosion risk cannot be ignored.

       

    • loading
    • [1]
      張國超, 林冠發, 孫育祿, 等. 13Cr不銹鋼腐蝕性能的研究現狀與進展. 全面腐蝕控制, 2011, 25(4): 16 doi: 10.3969/j.issn.1008-7818.2011.04.004

      Zhang G C, Lin G F, Sun Y L, et al. Research on corrosion resistance of 13Cr stainless steel. Total Corros Control, 2011, 25(4): 16 doi: 10.3969/j.issn.1008-7818.2011.04.004
      [2]
      褚武揚, 王燕斌, 關永生, 等. 抗H2S石油套管鋼的設計. 金屬學報, 1998, 31(10): 1073 doi: 10.3321/j.issn:0412-1961.1998.10.012

      Chu W Y, Wang Y B, Guan Y S, et al. Design of API C90 tubular steel. Acta Metall Sinica, 1998, 31(10): 1073 doi: 10.3321/j.issn:0412-1961.1998.10.012
      [3]
      呂祥鴻, 趙國仙, 王宇, 等. 超級13Cr馬氏體不銹鋼抗SSC性能研究. 材料工程, 2011(2): 17 doi: 10.3969/j.issn.1001-4381.2011.02.004

      Lü X H, Zhao G X, Wang Y, et al. SSC resistance of super 13Cr martensitic stainless steel. J Mater Eng, 2011(2): 17 doi: 10.3969/j.issn.1001-4381.2011.02.004
      [4]
      陳堯, 白真權. 13Cr和N80鋼高溫高壓抗腐蝕性能比較. 石油與天然氣化工, 2007, 36(3): 239 doi: 10.3969/j.issn.1007-3426.2007.03.016

      Chen Y, Bai Z Q. Compare of CO2 corrosion resistance of 13Cr and N80 steel under high temperature and high pressure. Chem Eng Oil Gas, 2007, 36(3): 239 doi: 10.3969/j.issn.1007-3426.2007.03.016
      [5]
      蔡亮. 環保型完井液的研究與應用[學位論文]. 大慶: 大慶石油學院, 2009

      Cai L. The Research and Application of Environmentally Friendly Completion Fluid[Dissertation]. Daqing: Daqing Petroleum Institute, 2009
      [6]
      Liu Y, Xu L N, Zhu J Y, et al. Pitting corrosion of 13Cr steel in aerated brine completion fluids. Mater Corros, 2014, 65(11): 1096 doi: 10.1002/maco.201307489
      [7]
      Liu Y, Xu L N, Lu M X, et al. Corrosion mechanism of 13Cr stainless steel in completion fluid of high temperature and high concentration bromine salt. Appl Surf Sci, 2014, 314: 768 doi: 10.1016/j.apsusc.2014.07.067
      [8]
      Yin Z F, Wang X Z, Liu L, et al. Characterization of corrosion product layers from CO2 corrosion of 13Cr stainless steel in simulated oilfield solution. J Mater Eng Perform, 2011, 20(7): 1330 doi: 10.1007/s11665-010-9769-z
      [9]
      呂祥鴻, 趙國仙, 樊治海, 等. 高溫高壓下Cl-濃度、CO2分壓對13Cr不銹鋼點蝕的影響. 材料保護, 2004, 37(6): 34 doi: 10.3969/j.issn.1001-1560.2004.06.013

      Lü X H, Zhao G X, Fan Z H, et al. Effects of CI- concentration and CO2 partial pressure on pitting behavior of 13Cr stainless steel under high temperature and high pressure. Mater Prot, 2004, 37(6): 34 doi: 10.3969/j.issn.1001-1560.2004.06.013
      [10]
      侯贊, 周慶軍, 王起江, 等. 13Cr系列不銹鋼在模擬井下介質中的CO2腐蝕研究. 中國腐蝕與防護學報, 2012, 32(4): 300 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGFF201204006.htm

      Hou Z, Zhou Q J, Wang Q J, et al. Investigation on carbon dioxide corrosion performance of various 13Cr steels in simulated stratum water. J Chin Soc Corros Prot, 2012, 32(4): 300 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGFF201204006.htm
      [11]
      Zhao Y, Li X P, Zhang C, et al. Investigation of the rotation speed on corrosion behavior of HP-13Cr stainless steel in the extremely aggressive oilfield environment by using the rotating cage test. Corros Sci, 2018, 145: 307 doi: 10.1016/j.corsci.2018.10.011
      [12]
      Lei X W, Wang H Y, Mao F X, et al. Electrochemical behaviour of martensitic stainless steel after immersion in a H2S-saturated solution. Corros Sci, 2018, 131: 164 doi: 10.1016/j.corsci.2017.10.015
      [13]
      Chen Z Y, Li L J, Zhang G A, et al. Inhibition effect of propargyl alcohol on the stress corrosion cracking of super 13Cr steel in a completion fluid. Corros Sci, 2013, 69: 205 doi: 10.1016/j.corsci.2012.12.004
      [14]
      ASTM International, United States. ASTM G1-03 Standard Practice for Preparing, Cleaning, and Evaluating Corrosion Test Specimens. West Conshohocken: ASTM International, 2011
      [15]
      NACE International, United States. NACE PR0775-05 Preparation, Installation, Analysis, and Interpretation of Corrosion Coupons in Oilfield Operations. Houston: ASTM International, 2005
      [16]
      Si J J, Wu Y D, Wang T, et al. Composition-controlled active-passive transition and corrosion behavior of Fe-Cr(Mo)-Zr-B bulk amorphous steels. Appl Surf Sci, 2018, 445: 496 doi: 10.1016/j.apsusc.2018.03.186
      [17]
      Moon J, Ha H Y, Park S J, et al. Effect of Mo and Cr additions on the microstructure, mechanical properties and pitting corrosion resistance of austenitic Fe-30Mn-10.5Al-1.1C lightweight steels. J Alloys Compd, 2019, 775: 1136 doi: 10.1016/j.jallcom.2018.10.253
      [18]
      Guo F F, Dong G N, Dong L S. High temperature passive film on the surface of Co-Cr-Mo alloy and its tribological properties. Appl Surf Sci, 2014, 314: 777 doi: 10.1016/j.apsusc.2014.07.086
    • 加載中

    Catalog

      通訊作者: 陳斌, bchen63@163.com
      • 1. 

        沈陽化工大學材料科學與工程學院 沈陽 110142

      1. 本站搜索
      2. 百度學術搜索
      3. 萬方數據庫搜索
      4. CNKI搜索

      Figures(13)  / Tables(2)

      Article views (1045) PDF downloads(31) Cited by()
      Proportional views
      Related

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return
      中文字幕在线观看