• Volume 42 Issue 5
    May  2020
    Turn off MathJax
    Article Contents
    WU Zong-he, QI Zi-chen, XU Peng-peng, ZHAO Yun-peng, XIAO Hong. Microstructure and bonding properties of hot-rolled 7075/AZ31B clad sheets[J]. Chinese Journal of Engineering, 2020, 42(5): 620-627. doi: 10.13374/j.issn2095-9389.2019.05.25.002
    Citation: WU Zong-he, QI Zi-chen, XU Peng-peng, ZHAO Yun-peng, XIAO Hong. Microstructure and bonding properties of hot-rolled 7075/AZ31B clad sheets[J]. Chinese Journal of Engineering, 2020, 42(5): 620-627. doi: 10.13374/j.issn2095-9389.2019.05.25.002

    Microstructure and bonding properties of hot-rolled 7075/AZ31B clad sheets

    doi: 10.13374/j.issn2095-9389.2019.05.25.002
    More Information
    • Corresponding author: E-mail: xhh@ysu.edu.cn
    • Received Date: 2019-05-25
    • Publish Date: 2020-05-01
    • Magnesium/aluminum (Mg/Al) bimetallic laminated composites have attracted considerable attention because of their excellent properties. Mg alloys are lightweight structural metals with low density and excellent properties such as high stiffness-to-weight ratio, high strength-to-weight ratio, and good damping capacity. Thus, Mg alloys have considerable potential in automotive and aerospace fields. However, the application of Mg and its alloys is still restricted because of their low corrosion resistance. By contrast, as structural materials, Al alloys are widely used in mechanical and aerospace fields because of their excellent properties, such as light weight, high corrosion resistance, low cost, and good plastic formability. Therefore, Mg/Al laminated composites that combine the advantages of substrates to achieve appropriate coordination, have attracted worldwide attention. To analyze the variation of the bonding strength of hot-rolled Al/Mg clad sheets, various rolling parameters, such as reduction ratio, rolling temperature, and rolling speed, were comprehensively considered in this work. Moreover, 7075 Al/AZ31B Mg composite plates were prepared by single-pass hot rolling. Results show that dynamic recrystallization occurs in the microstructure of the Mg matrix during the rolling process because of heat and strong deformation. Furthermore, the increase in the rolling speed contributed to the complete dynamic recrystallization. At the same rolling temperature, the bonding strength of the Al/Mg composite plates first increased and then decreased with the increase in the reduction ratio. The bonding strength increased because of the increase in the element diffusion width across the interface and the grain refinement near the Mg interface. The bonding strength decreased because cracks occurred near the interface of the Mg matrix due to the strong deformation and excess heat generated by the plastic work, resulting in the growth of the Mg side grains with the increase in the temperature of the Mg matrix. The shear test was conducted on the composite plates. When the shear strength of the Al/Mg composite plates was low, shear fracture occurred at the interface with brittle fracture feature. Although the fracture morphology presented a ductile fracture feature with high shear strength, the fracture occurred on the Mg alloy side.

       

    • loading
    • [1]
      Dai J, Huang J, Li Z G, et al. Effects of heat input on microstructure and mechanical properties of laser-welded Mg-rare earth alloy. J Mater Eng Perform, 2013, 22(1): 64 doi: 10.1007/s11665-012-0173-8
      [2]
      陳振華. 變形鎂合金. 北京: 化學工業出版社, 2005

      Chen Z H. Deformed Magnesium Alloy. Beijing: Chemical Industry Press, 2005
      [3]
      Kojima Y, Kamado S. Fundamental magnesium researches in Japan. Mater Sci Forum, 2005, 488-489: 9 doi: 10.4028/www.scientific.net/MSF.488-489.9
      [4]
      Baghni I M, Wu Y S, Li J Q, et al. Mechanical properties and potential applications of magnesium alloys. Trans Nonferrous Met Soc China, 2003, 13(6): 1253
      [5]
      Schl?gl C M, Planitzer C, Harrer O, et al. Production and formability of roll bounded magnesium (AZ31)-aluminium (1050)-composites. BHM-Berg und Huttenmannische Monatshefte, 2011, 156(7): 249 doi: 10.1007/s00501-011-0003-6
      [6]
      Ikpi M E, Dong J H, Ke W. Effect of cadmium addition on the galvanic corrosion of AM60 magnesium alloy in 0.1 M sodium chloride solution. Solid State Phenomena, 2015, 227: 71 doi: 10.4028/www.scientific.net/SSP.227.71
      [7]
      Fang D Q, Ma N, Cai K L, et al. Age hardening behaviors, mechanical and corrosion properties of deformed Mg–Mn–Sn sheets by pre-rolled treatment. Mater Des, 2014, 54: 72 doi: 10.1016/j.matdes.2013.08.028
      [8]
      Hütsch L L, Hütsch J, Herzberg K, et al. Increased room temperature formability of Mg AZ31 by high speed friction stir processing. Mater Des, 2014, 54: 980 doi: 10.1016/j.matdes.2013.08.108
      [9]
      Zhang T, Shao Y W, Meng G Z, et al. Corrosion of hot extrusion AZ91 magnesium alloy: I-relation between the microstructure and corrosion behavior. Corros Sci, 2011, 53(5): 1960 doi: 10.1016/j.corsci.2011.02.015
      [10]
      Yan Y B, Zhang Z W, Shen W, et al. Microstructure and properties of magnesium AZ31B–aluminum 7075 explosively welded composite plate. Mater Sci Eng A, 2010, 527(9): 2241 doi: 10.1016/j.msea.2009.12.007
      [11]
      Zhang T T, Wang W X, Zhou J, et al. Molecular dynamics simulations and experimental investigations of atomic diffusion behavior at bonding interface in an explosively welded Al/Mg alloy composite plate. Acta Metall Sinica (English Lett), 2017, 30(10): 983 doi: 10.1007/s40195-017-0628-x
      [12]
      張晶, 池成忠, 崔曉磊, 等. 熱壓制備5052/AZ31B/5052三層復合板材的微觀組織與力學性能. 鍛壓技術, 2018, 43(12):136

      Zhang J, Chi C Z, Cui X L, et al. Microstructure and mechanical properties of 5052/AZ31B/5052 three-layer composite sheet prepared by hot pressing. Forging Stamping Technol, 2018, 43(12): 136
      [13]
      Jafarian M, Rizi M S, Jafarian M, et al. Effect of thermal tempering on microstructure and mechanical properties of Mg-AZ31/Al-6061 diffusion bonding. Mater Sci Eng A, 2016, 666: 372 doi: 10.1016/j.msea.2016.04.011
      [14]
      Luo C Z, Liang W, Li X R, et al. Study on interface characteristics of Al/Mg/Al composite plates fabricated by two-pass hot rolling. Mater Sci Forum, 2013, 747: 346
      [15]
      張建軍. Al/Mg/Al熱軋復合板的制備及其微觀組織和力學性能研究[學位論文]. 太原: 太原理工大學, 2016

      Zhang J J. Preparation of Al/Mg/Al Laminated Composite Fabricated by Hot Rolled and Investigation of Microstructure and Mechanical Properties[Dissertation]. Taiyuan: Taiyuan University of Technology, 2016
      [16]
      Zhang X P, Tan M J, Yang T H, et al. Bonding strength of Al/Mg/Al alloy tri-metallic laminates fabricated by hot rolling. Bull Mater Sci, 2011, 34(4): 805 doi: 10.1007/s12034-011-0198-x
      [17]
      Zhang X P, Yang T H, Liu J Q, et al. Mechanical properties of an Al/Mg/Al trilaminated composite fabricated by hot rolling. J Mater Sci, 2010, 45(13): 3457 doi: 10.1007/s10853-010-4373-z
      [18]
      Chen Z J, Zeng Z, Huang G J, et al. Research on the Al/Mg/Al three-layer clad sheet fabricated by hot roll bonding technology. Rare Met Mater Eng, 2011, 40(Suppl 3): 136
      [19]
      Liu C Y, Wang Q, Jia Y Z, et al. Microstructures and mechanical properties of Mg/Mg and Mg/Al/Mg laminated composites prepared via warm roll bonding. Mater Sci Eng A, 2012, 556: 1 doi: 10.1016/j.msea.2012.06.046
      [20]
      楊續躍, 張之嶺, 張雷, 等. 應變速率對AZ61鎂合金動態再結晶行為的影響. 中國有色金屬學報, 2011, 21(8):1801 doi: 10.1016/S1003-6326(11)60934-5

      Yang X Y, Zhang Z L, Zhang L, et al. Influence of strain rate on dynamic recrystallization behavior of AZ61 magnesium alloy. Trans Nonferrous Met Soc China, 2011, 21(8): 1801 doi: 10.1016/S1003-6326(11)60934-5
      [21]
      Maksoud I A, Ahmed H, R?del J. Investigation of the effect of strain rate and temperature on the deformability and microstructure evolution of AZ31 magnesium alloy. Mater Sci Eng A, 2009, 504(1-2): 40 doi: 10.1016/j.msea.2008.10.033
      [22]
      Santosh R, Das S K, Das G, et al. Three-dimensional thermomechanical simulation and experimental validation on failure of dissimilar material welds. Metall Mater Trans A, 2016, 47(7): 3511 doi: 10.1007/s11661-016-3476-9
      [23]
      Duan X J, Sheppard T. Simulation and control of microstructure evolution during hot extrusion of hard aluminium alloys. Mater Sci Eng A, 2003, 351(1-2): 282 doi: 10.1016/S0921-5093(02)00840-7
      [24]
      Sauvage X, Dinda G P, Wilde G. Non-equilibrium intermixing and phase transformation in severely deformed Al/Ni multilayers. Scripta Mater, 2007, 56(3): 181 doi: 10.1016/j.scriptamat.2006.10.021
      [25]
      Chung C Y, Zhu M, Man C H. Effect of mechanical alloying on the solid state reaction processing of Ni-36.5 at.% Al alloy. Intermetallics, 2002, 10(9): 865 doi: 10.1016/S0966-9795(02)00088-2
      [26]
      Valiev R Z, Islamgaliev R K, Alexandrov I V. Bulk nanostructured materials from severe plastic deformation. Progr Mater Sci, 2000, 45(2): 103 doi: 10.1016/S0079-6425(99)00007-9
      [27]
      Sauvage X, Wetscher F, Pareige P. Mechanical alloying of Cu and Fe induced by severe plastic deformation of a Cu–Fe composite. Acta Mater, 2005, 53(7): 2127 doi: 10.1016/j.actamat.2005.01.024
      [28]
      Sato K, Yoshiie T, Satoh Y, et al. Simulation of vacancy migration energy in Cu under high strain. Mater Sci Eng A, 2003, 350(1-2): 220 doi: 10.1016/S0921-5093(02)00692-5
    • 加載中

    Catalog

      通訊作者: 陳斌, bchen63@163.com
      • 1. 

        沈陽化工大學材料科學與工程學院 沈陽 110142

      1. 本站搜索
      2. 百度學術搜索
      3. 萬方數據庫搜索
      4. CNKI搜索

      Figures(9)  / Tables(2)

      Article views (1492) PDF downloads(40) Cited by()
      Proportional views
      Related

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return
      中文字幕在线观看