• Volume 41 Issue 8
    Aug.  2019
    Turn off MathJax
    Article Contents
    LIU Yan-hui, HUANG Xiang-yun, HUANG Xiao-fang, WANG Qing. Nonsmooth active control method for base-smart isolated structures with roller bearings[J]. Chinese Journal of Engineering, 2019, 41(8): 1092-1102. doi: 10.13374/j.issn2095-9389.2019.08.015
    Citation: LIU Yan-hui, HUANG Xiang-yun, HUANG Xiao-fang, WANG Qing. Nonsmooth active control method for base-smart isolated structures with roller bearings[J]. Chinese Journal of Engineering, 2019, 41(8): 1092-1102. doi: 10.13374/j.issn2095-9389.2019.08.015

    Nonsmooth active control method for base-smart isolated structures with roller bearings

    doi: 10.13374/j.issn2095-9389.2019.08.015
    More Information
    • Corresponding author: LIU Yan-hui, E-mail: Liuyanhui2012@163.com
    • Received Date: 2018-07-27
    • Publish Date: 2019-08-01
    • In applied structural control technology, base-isolated technology has become popular due to its advantage of simple shock absorption, stable performance, and reasonable cost. Currently, base isolation is extensively applied worldwide, and its role in mitigating the seismic response of structures continues to grow. Moreover, it has been proven effective in decreasing seismic response of structures under recent strong earthquakes. However, the displacement at the isolation layer is sometimes large under strong earthquakes, which will decrease the safety of the structure and perhaps lead to the failure of the isolation layer. Therefore, in this study, the base-isolated structure with roller bearings is taken to investigate the seismic response control of structures, and the active control devices are added in the isolation layer of the isolated structure to decrease the seismic displacement at the isolation layer, so that a smart-isolated structure is formed. Nonsmooth control algorithm is introduced in the smart-isolated structure. Based on the feedback of the velocity and displacement of the isolation layer, nonsmooth control algorithm is proposed for designing the smart-isolated structure. Moreover, according to Lyapunov stable theory, the global finite time stability of intelligent control closed-loop system under nonsmooth control is deduced. A six-layer isolated structure with roller bearings is used as an example, and a simulation analysis of seismic response control is performed based on the nonsmooth active control algorithm and linear quadratic Gaussian (LQG) active control algorithm. The results show that the smart-isolated technology can effectively control seismic displacement at the isolation layer, and compared with the passive isolated technology, the superstructure seismic response is significantly decreased. Meanwhile, the results demonstrate that compared with the LQG control algorithm, the nonsmooth control algorithm has a better control effect and can implement feedback control for base-isolated structures by using fewer feedbacks. Furthermore, the nonsmooth control algorithm has great stability.

       

    • loading
    • [1]
      周福霖. 工程結構減震控制. 北京: 地震出版社, 1997

      Zhou F L. Seismic Control in Engineering Structures. Beijing: Seismological Press, 1997
      [2]
      歐進萍. 結構振動控制: 主動、半主動和智能控制. 北京: 科學出版社, 2003

      Ou J P. Structural Vibration Control-Active, Semi-active and Intelligent control. Beijing: Science Press, 2003
      [3]
      王佳偉, 楊亞非, 錢玉恒. 基于極點配置方法的扭轉振動裝置控制器設計. 實驗技術與管理, 2014, 31(7): 86 https://www.cnki.com.cn/Article/CJFDTOTAL-SYJL201407025.htm

      Wang J W, Yang Y F, Qian Y H. Design of controller for torsion vibration device based on pole assignment method. Exp Technol Manage, 2014, 31(7): 86 https://www.cnki.com.cn/Article/CJFDTOTAL-SYJL201407025.htm
      [4]
      童少偉, 唐懷平. 近似離散瞬時最優控制及作動器位置優化研究. 振動工程學報, 2016, 29(5): 920 https://www.cnki.com.cn/Article/CJFDTOTAL-ZDGC201605021.htm

      Tong S W, Tang H P. Research on approximate discrete instantaneous optimal control algorithm and optimization of the actuator positions. J Vib Eng, 2016, 29(5): 920 https://www.cnki.com.cn/Article/CJFDTOTAL-ZDGC201605021.htm
      [5]
      Yang J N, Wu J C, Kawashima K, et al. Hybrid control of seismic-excited bridge structure. Earthquake Eng Struct Dyn, 1995, 24(11): 1437 doi: 10.1002/eqe.4290241103
      [6]
      Yang J N, Wu J C, Agrawal A K. Sliding mode control for seismically excited linear structures. J Eng Mech, 1995, 121(12): 1386 doi: 10.1061/(ASCE)0733-9399(1995)121:12(1386)
      [7]
      Rosier L. Homogeneous Lyapunov function for homogeneous continuous vector field. Syst Control Lett, 1992, 19(6): 467 doi: 10.1016/0167-6911(92)90078-7
      [8]
      Kawski M. Stability and nilpotent approximations//Proceedings of the 27th IEEE Conference on Decision and Control. Austin, 1988: 1244
      [9]
      Hermes H. Asymptotically stabilizing feedback controls. J Differential Equations l, 1991, 92(1): 76 doi: 10.1016/0022-0396(91)90064-G
      [10]
      王思. 基于Benchmark智能隔震結構的非光滑控制算法的研究與分析[學位論文]. 廣州: 廣州大學, 2016

      Wang S. Study on Non-smooth Control Algorithm for Smart Base Isolated Benchmark Building[Dissertation]. Guangzhou: Guangzhou University, 2016
      [11]
      馬克茂. 航天器連續非光滑姿態控制律設計. 宇航學報, 2012, 33(6): 713 doi: 10.3873/j.issn.1000-1328.2012.06.005

      Ma K M. Design of continuous non-smooth attitude control laws for spacecraft. J Astronautics, 2012, 33(6): 713 doi: 10.3873/j.issn.1000-1328.2012.06.005
      [12]
      馬克茂. 高精度制導律的非光滑設計與實現. 彈道學報, 2013, 25(2): 1 https://www.cnki.com.cn/Article/CJFDTOTAL-DDXB201302003.htm

      Ma K M. Non-smooth design and implementation of high-precision guidance laws. J Ball, 2013, 25(2): 1 https://www.cnki.com.cn/Article/CJFDTOTAL-DDXB201302003.htm
      [13]
      王建暉, 王清, 馬克茂. 一種永磁同步電機非光滑控制器設計. 計算機仿真, 2016, 33(3): 227 https://www.cnki.com.cn/Article/CJFDTOTAL-JSJZ201603050.htm

      Wang J H, Wang Q, Ma K M. Non-smooth controller design for permanent magnet synchronous motors. Comput Simul, 2016, 33(3): 227 https://www.cnki.com.cn/Article/CJFDTOTAL-JSJZ201603050.htm
      [14]
      李世華, 丁世宏, 都海波, 等. 非光滑控制理論與應用. 北京: 科學出版社, 2013

      Li S H, Ding S H, Du H B, et al. Theory and Application of Non-smooth Control. Beijing: Science Press, 2013
      [15]
      李宏男, 李忠獻, 祈皚, 等. 結構振動與控制. 北京: 中國建筑工業出版社, 2005

      Li H N, Li Z X, Qi A, et al. Structure Vibration and Control. Beijing: China Architecture & Building Press, 2005
      [16]
      江浩斌, 李臣旭, 馬世典, 等. 智能車輛自動泊車路徑跟蹤的非光滑控制策略. 江蘇大學學報: 自然科學版, 2017, 38(5): 497 https://www.cnki.com.cn/Article/CJFDTOTAL-JSLG201705001.htm

      Jiang H B, Li C X, Ma S D, et al. Path tracking control of automatic parking for intelligent vehicle based on non-smooth control strategy. J Jiangsu Univ Nat Sci Ed, 2017, 38(5): 497 https://www.cnki.com.cn/Article/CJFDTOTAL-JSLG201705001.htm
      [17]
      楊晨. 基于有限時間控制技術的Buck型DC-DC變換器控制系統研究[學位論文]. 合肥: 合肥工業大學, 2017

      Yang C. Research on Buck Type DC-DC Converter Control System Based on Finite-time Control Technique[Dissertation]. Hefei: Hefei University of Technology, 2017
      [18]
      王清, 王建暉, 馬克茂, 等. 結構振動控制的非光滑控制算法及其應用. 地震工程與工程振動, 2016, 36(5): 207 https://www.cnki.com.cn/Article/CJFDTOTAL-DGGC201605025.htm

      Wang Q, Wang J H, Ma K M, et al. Nonsmooth control algorithm for structural vibration control and its applications. Earthquake Eng Eng Dyn, 2016, 36(5): 207 https://www.cnki.com.cn/Article/CJFDTOTAL-DGGC201605025.htm
      [19]
      馬克茂. 帶有終端視線約束的非光滑制導律設計. 彈道學報, 2011, 23(2): 14 https://www.cnki.com.cn/Article/CJFDTOTAL-DDXB201102005.htm

      Ma K M. Design of non-smooth guidance law with terminal line-of-sight constraint. J Ball, 2011, 23(2): 14 https://www.cnki.com.cn/Article/CJFDTOTAL-DDXB201102005.htm
    • 加載中

    Catalog

      通訊作者: 陳斌, bchen63@163.com
      • 1. 

        沈陽化工大學材料科學與工程學院 沈陽 110142

      1. 本站搜索
      2. 百度學術搜索
      3. 萬方數據庫搜索
      4. CNKI搜索

      Figures(24)  / Tables(3)

      Article views (661) PDF downloads(16) Cited by()
      Proportional views
      Related

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return
      中文字幕在线观看