Citation: | YUAN Li, XIA Tong, ZHANG Xiao-shuang. Physiological curve extraction of the human ear based on the improved YOLACT[J]. Chinese Journal of Engineering, 2022, 44(8): 1386-1395. doi: 10.13374/j.issn2095-9389.2021.01.11.005 |
[1] |
楊月如, 吳紅斌. 耳廓的解剖學研究. 解剖學雜志, 1988, 11(1):56
Yang Y R, Wu H B. Anatomical study of auricle. Chin J Anat, 1988, 11(1): 56
|
[2] |
齊娜, 李莉, 趙偉. 中國成年人耳廓形態測量及分類. 聲學技術, 2010, 29(5):518
Qi N, Li L, Zhao W. Morphometry and classification of Chinese adult's auricles. Tech Acoust, 2010, 29(5): 518
|
[3] |
Azaria R, Adler N, Silfen R, et al. Morphometry of the adult human earlobe: A study of 547 subjects and clinical application. Plast Reconstr Surg, 2003, 111(7): 2398 doi: 10.1097/01.PRS.0000060995.99380.DE
|
[4] |
Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation // Lecture Notes in Computer Science. Munich, 2015: 234
|
[5] |
Milletari F, Navab N, Ahmadi S A. V-net: Fully convolutional neural networks for volumetric medical image segmentation // 2016 Fourth International Conference on 3D Vision (3DV). Stanford, 2016: 565
|
[6] |
Noh H, Hong S, Han B. Learning deconvolution network for semantic segmentation // 2015 IEEE International Conference on Computer Vision (ICCV). Santiago, 2015: 1520
|
[7] |
Zhao H S, Shi J P, Qi X J, et al. Pyramid scene parsing network // 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu, 2017: 6230
|
[8] |
Chen L C, Papandreou G, Schroff F, et al. Rethinking atrous convolution for semantic image segmentation // Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Long Beach, 2017: 2536
|
[9] |
王志明, 劉志輝, 黃洋科, 等. 基于深度學習的高效火車號識別. 工程科學學報, 2020, 42(11):1525
Wang Z M, Liu Z H, Huang Y K, et al. Efficient wagon number recognition based on deep learning. Chin J Eng, 2020, 42(11): 1525
|
[10] |
Chen X L, Girshick R, He K M, et al. TensorMask: A foundation for dense object segmentation // 2019 IEEE/CVF International Conference on Computer Vision (ICCV). Seoul, 2019: 2061
|
[11] |
Dai J F, He K M, Sun J. Instance-aware semantic segmentation via multi-task network cascades // 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas, 2016: 3150
|
[12] |
Li Y, Qi H Z, Dai J F, et al. Fully convolutional instance-aware semantic segmentation // 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu, 2017: 4438
|
[13] |
Bolya D, Zhou C, Xiao F Y, et al. YOLACT: real-time instance segmentation // 2019 IEEE/CVF International Conference on Computer Vision (ICCV). Seoul, 2019: 9156
|
[14] |
He K M, Gkioxari G, Dollár P, et al. Mask R-CNN // 2017 IEEE International Conference on Computer Vision (ICCV). Venice, 2017: 2980
|
[15] |
Ren S Q, He K M, Girshick R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks. IEEE Trans Pattern Anal Mach Intell, 2017, 39(6): 1137 doi: 10.1109/TPAMI.2016.2577031
|
[16] |
Cai Z W, Vasconcelos N. Cascade R-CNN: Delving into high quality object detection // 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, 2018: 6154
|
[17] |
Qin Z, Li Z M, Zhang Z N, et al. ThunderNet: towards real-time generic object detection on mobile devices // 2019 IEEE/CVF International Conference on Computer Vision (ICCV). Seoul, 2019: 6717
|
[18] |
He K M, Zhang X Y, Ren S Q, et al. Deep residual learning for image recognition // 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas, 2016: 770
|
[19] |
Zhang H, Wu C R, Zhang Z Y, et al. ResNeSt: Split-attention networks [J/OL]. ArXiv Preprint (2020-04-19) [2020-12-31].https://arxiv.org/abs/2004.08955
|
[20] |
Lin T Y, Dollár P, Girshick R, et al. Feature pyramid networks for object detection // 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu, 2017: 936
|
[21] |
Xie S N, Girshick R, Dollár P, et al. Aggregated residual transformations for deep neural networks // 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu, 2017: 5987
|
[22] |
Hu J, Shen L, Sun G. Squeeze-and-excitation networks // 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, 2018: 7132
|
[23] |
Li X, Wang W H, Hu X L, et al. Selective kernel networks // 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Long Beach, 2019: 510
|
[24] |
He T, Zhang Z, Zhang H, et al. Bag of tricks for image classification with convolutional neural networks // 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Long Beach, 2019: 558
|
[25] |
Shelhamer E, Long J, Darrell T. Fully convolutional networks for semantic segmentation. IEEE Trans Pattern Anal Mach Intell, 2017, 39(4): 640 doi: 10.1109/TPAMI.2016.2572683
|
[26] |
Liu W, Anguelov D, Erhan D, et al. SSD: single shot MultiBox detector // Computer Vision – ECCV 2016. Amsterdam, 2016: 21
|
[27] |
Lin T Y, Maire M, Belongie S, et al. Microsoft COCO: common objects in context // Computer Vision – ECCV 2014. Zurich, 2014: 740
|
[28] |
Zhang Y, Mu Z C, Yuan L, et al. USTB-helloear: A large database of ear images photographed under uncontrolled conditions // International Conference on Image and Graphics. Shanghai, 2017: 405
|
[29] |
Yuan L, Zhao H N, Zhang Y, et al. Ear alignment based on convolutional neural network // Chinese Conference on Biometric Recognition. Urumqi, 2018: 562
|