Citation: | GONG Dun-wei, ZHANG Yong-kai, GUO Yi-nan, WANG Bin, FAN Kuan-lu, HUO Yan. Named entity recognition of Chinese electronic medical records based on multifeature embedding and attention mechanism[J]. Chinese Journal of Engineering, 2021, 43(9): 1190-1196. doi: 10.13374/j.issn2095-9389.2021.01.12.006 |
[1] |
唐國強, 高大啟, 阮彤, 等. 融入語言模型和注意力機制的臨床電子病歷命名實體識別. 計算機科學, 2020, 47(3):211 doi: 10.11896/jsjkx.190200259
Tang G Q, Gao D Q, Ruan T, et al. Clinical electronic medical record named entity recognition incorporating language model. Comput Sci, 2020, 47(3): 211 doi: 10.11896/jsjkx.190200259
|
[2] |
Topol E J. High-performance medicine: The convergence of human and artificial intelligence. Nat Med, 2019, 25(1): 44 doi: 10.1038/s41591-018-0300-7
|
[3] |
He J, Baxter S L, Xu J, et al. The practical implementation of artificial intelligence technologies in medicine. Nat Med, 2019, 25(1): 30 doi: 10.1038/s41591-018-0307-0
|
[4] |
李博, 康曉東, 張華麗, 等. 采用Transformer-CRF的中文電子病歷命名實體識別. 計算機工程與應用, 2020, 56(5):153 doi: 10.3778/j.issn.1002-8331.1909-0211
Li B, Kang X D, Zhang H L, et al. Named entity recognition in Chinese electronic medical records using transformer-CRF. Comput Eng Appl, 2020, 56(5): 153 doi: 10.3778/j.issn.1002-8331.1909-0211
|
[5] |
Luo L, Yang Z H, Yang P, et al. An attention-based BiLSTM-CRF approach to document-level chemical named entity recognition. Bioinformatics, 2018, 34(8): 1381 doi: 10.1093/bioinformatics/btx761
|
[6] |
Xu K, Yang Z G, Kang P P, et al. Document-level attention-based BiLSTM-CRF incorporating disease dictionary for disease named entity recognition. Comput Biol Med, 2019, 108: 122 doi: 10.1016/j.compbiomed.2019.04.002
|
[7] |
楊錦鋒, 于秋濱, 關毅, 等. 電子病歷命名實體識別和實體關系抽取研究綜述. 自動化學報, 2014, 40(8):1537
Yang J F, Yu Q B, Guan Y, et al. An overview of research on electronic medical record oriented named entity recognition and entity relation extraction. Acta Autom Sin, 2014, 40(8): 1537
|
[8] |
Lei J, Tang B, Lu X, et al. A comprehensive study of named entity recognition in Chinese clinical text. J Am Med Inform Assoc, 2014, 21(5): 808 doi: 10.1136/amiajnl-2013-002381
|
[9] |
Hirschberg J, Manning C D. Advances in natural language processing. Science, 2015, 349(6245): 261 doi: 10.1126/science.aaa8685
|
[10] |
Wang Q, Zhou Y M, Ruan T, et al. Incorporating dictionaries into deep neural networks for the Chinese clinical named entity recognition. J Biomed Informatics, 2019, 92: 103133 doi: 10.1016/j.jbi.2019.103133
|
[11] |
Shang J B, Liu L Y, Gu X T, et al. Learning named entity tagger using domain-specific dictionary//Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Brussels, 2018: 2054
|
[12] |
Kraus S, Blake C, West S L. Information extraction from medical notes [J/OL]. arXiv preprint (2007-07-24) [2020-12-26]. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.120.3671&rep=rep1&type=pdf.
|
[13] |
Gorinski P J, Wu H H, Grover C, et al. Named entity recognition for electronic health records: A comparison of rule-based and machine learning approaches [J/OL]. arXiv preprint (2019-04-25) [2020-12-26]. https://arxiv.org/pdf/1903.03985.pdf.
|
[14] |
Ma X Z, Hovy E. End-to-end Sequence Labeling via Bi-directional LSTM-CNNs-CRF [J/OL]. arXiv preprint (2016-05-29) [2020-12-26]. https://arxiv.org/pdf/1603.01354.pdf.
|
[15] |
Zhang Y, Yang J. Chinese NER Using Lattice LSTM [J/OL]. arXiv preprint (2018-07-05) [2020-12-26]. https://arxiv.org/pdf/1805.02023.pdf.
|
[16] |
Alsentzer E, Murphy J R, Boag W, et al. Publicly available clinical BERT embeddings [J/OL]. arXiv preprint (2019-6-20) [2020-12-26]. https://arxiv.org/pdf/1904.03323.pdf.
|
[17] |
Jiang M, Chen Y K, Liu M, et al. A study of machine-learning-based approaches to extract clinical entities and their assertions from discharge summaries. J Am Med Inform Assoc, 2011, 18(5): 601 doi: 10.1136/amiajnl-2011-000163
|
[18] |
Wei Q K, Chen T, Xu R F, et al. Disease named entity recognition by combining conditional random fields and bidirectional recurrent neural networks. Database (Oxford)
|
[19] |
龔樂君, 張知菲. 基于領域詞典與CRF雙層標注的中文電子病歷實體識別. 工程科學學報, 2020, 42(4):469
Gong L J, Zhang Z F. Clinical named entity recognition from Chinese electronic medical records using a double-layer annotation model combining a domain dictionary with CRF. Chin J Eng, 2020, 42(4): 469
|
[20] |
Hu J L, Shi X, Liu Z J, et al.HITSZ_CNER: a hybrid system for entity recognition from Chinese clinical text//Proceedings of the Evaluation Tasks at the China Conference on Knowledge Graph and Semantic Computing (CCKS 2017). Chengdu, 2017: 1
|
[21] |
Mikolov T, Grave E, Bojanowski P, et al. Advances in pre-training distributed word representations [J/OL]. arXiv preprint (2017-12-26) [2020-12-26]. https://arxiv.org/pdf/1712.09405.pdf.
|
[22] |
Pennington J, Socher R, Manning C. GloVe: global vectors for word representation//Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP). Doha, 2014: 1532
|
[23] |
Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need [J/OL]. arXiv preprint (2017-12-06) [2020-12-26]. https://arxiv.org/pdf/1706.03762.pdf.
|
[24] |
Choi E, Bahadori M T, Kulas J A, et al. RETAIN: interpretable predictive model in healthcare using reverse time attention mechanism [J/OL]. arXiv preprint (2016-08-19) [2020-12-26]. https://arxiv.org/pdf/1608.05745.pdf.
|
[25] |
Zhu Q L, Li X L, Conesa A, et al. GRAM-CNN: a deep learning approach with local context for named entity recognition in biomedical text. Bioinformatics, 2018, 34(9): 1547 doi: 10.1093/bioinformatics/btx815
|
[26] |
Wu G H, Tang G G, Wang Z R, et al. An attention-based BiLSTM-CRF model for Chinese clinic named entity recognition. IEEE Access, 2019, 7: 113942 doi: 10.1109/ACCESS.2019.2935223
|