Citation: | LI Ting, YE Song, LI Jing-zhen, MA Jing-jing, LU Yao-peng, HONG Pei-tao, NIE Ze-dong. High accuracy blood glucose monitoring based on ECG signals[J]. Chinese Journal of Engineering, 2021, 43(9): 1215-1223. doi: 10.13374/j.issn2095-9389.2021.01.12.009 |
[1] |
萬曉珊. 2型糖尿病的危險因素及干預綜述. 中國社會醫學雜志, 2006, 23(4):251 doi: 10.3969/j.issn.1673-5625.2006.04.019
Wan X S. Review of the risk factors and intervention of type 2 diabetes. Chin J Soc Med, 2006, 23(4): 251 doi: 10.3969/j.issn.1673-5625.2006.04.019
|
[2] |
鄭成竹, 丁丹. 中國糖尿病外科治療專家指導意見(2010). 中國實用外科雜志, 2011, 31(1):54
Zheng C Z, Ding D. Guiding opinions of Chinese diabetes surgery experts (2010). Chin J Pract Surg, 2011, 31(1): 54
|
[3] |
侯清濤, 李蕓, 李舍予, 等. 全球糖尿病疾病負擔現狀. 中國糖尿病雜志, 2016, 24(1):92 doi: 10.3969/j.issn.1006-6187.2016.01.023
Hou Q T, Li Y, Li S Y, et al. The global burden of diabetes mellitus. Chin J Diabetes, 2016, 24(1): 92 doi: 10.3969/j.issn.1006-6187.2016.01.023
|
[4] |
鄭忠駿. 連續血糖監測系統在危重患者中應用的初步研究[學位論文]. 杭州: 浙江大學, 2016.
Zheng Z J. Application of Continuous Glucose Monitoring System in Critical Illness: A Preliminary Study [Dissertation]. Hangzhou: Zhejiang University, 2016
|
[5] |
韋哲, 張秉璽, 石恒兵, 等. 無創血糖檢測技術的發展. 中國醫學裝備, 2020, 17(12):196 doi: 10.3969/J.ISSN.1672-8270.2020.12.046
Wei Z, Zhang B X, Shi H B, et al. The development of noninvasive detection technique of blood glucose. China Med Equip, 2020, 17(12): 196 doi: 10.3969/J.ISSN.1672-8270.2020.12.046
|
[6] |
王麗蘋. 融合領域知識的心電圖分類方法研究[學位論文]. 上海: 華東師范大學, 2013.
Wang L P. Study on Approach of ECG Classification with Domain Knowledge [Dissertation]. Shanghai: East China Normal University, 2013
|
[7] |
劉澄玉, 楊美程, 邸佳楠, 等. 穿戴式心電: 發展歷程、核心技術與未來挑戰. 中國生物醫學工程學報, 2019, 38(6):641 doi: 10.3969/j.issn.0258-8021.2019.06.001
Liu C Y, Yang M C, Di J N, et al. Wearable ECG: History, key technologies and future challenges. Chin J Biomed Eng, 2019, 38(6): 641 doi: 10.3969/j.issn.0258-8021.2019.06.001
|
[8] |
王建華. 高血糖、低血糖各有哪些危害. 心血管病防治知識, 2016(4):19
Wang J H. What are the hazards of hyperglycemia and hypoglycemia. Prevent treat cardiovasc, 2016(4): 19
|
[9] |
Acharya U R, Fujita H, Lih O S, et al. Automated detection of coronary artery disease using different durations of ECG segments with convolutional neural network. Knowl Based Syst, 2017, 132: 62 doi: 10.1016/j.knosys.2017.06.003
|
[10] |
Pfeifer M A, Cook D, Brodsky J, et al. Quantitative evaluation of cardiac parasympathetic activity in normal and diabetic man. Diabetes, 1982, 31(4pt1): 339
|
[11] |
Porumb M, Stranges S, Pescapè A, et al. Precision medicine and artificial intelligence: A pilot study on deep learning for hypoglycemic events detection based on ECG. Sci Rep, 2020, 10: 170 doi: 10.1038/s41598-019-56927-5
|
[12] |
Jin X F, Liu C H, Xu T L, et al. Artificial intelligence biosensors: Challenges and prospects. Biosens Bioelectron, 2020, 165: 112412 doi: 10.1016/j.bios.2020.112412
|
[13] |
Tobore I, Kandwal A, Li J Z, et al. Towards adequate prediction of prediabetes using spatiotemporal ECG and EEG feature analysis and weight-based multi-model approach. Knowl Based Syst, 2020, 209: 106464 doi: 10.1016/j.knosys.2020.106464
|
[14] |
Kandhasamy J P, Balamurali S. Performance analysis of classifier models to predict diabetes mellitus. Procedia Comput Sci, 2015, 47: 45 doi: 10.1016/j.procs.2015.03.182
|
[15] |
Tafa Z, Pervetica N, Karahoda B. An intelligent system for diabetes prediction//2015 4th Mediterranean Conference on Embedded Computing (MECO). Budva, 2015: 378
|
[16] |
劉宇巍. 基于PPG和ECG信號融合的無創血糖檢測方法研究[學位論文]. 廣州: 廣東工業大學, 2018.
Liu Y W. Research on Non-Invasive Blood Glucose Detection Based on PPG and ECG Fusion Signal [Dissertation]. Guangzhou: Guangdong University of Technology, 2018
|
[17] |
馮培華. 基于信號處理技術的無創血糖估計研究[學位論文]. 廣州: 廣東工業大學, 2019.
Feng P H. Research on Blood Glucose Estimation Based on Signal Processing Technology [Dissertation]. Guangzhou: Guangdong University of Technology, 2019
|
[18] |
Tobore I, Li J, Yuhang L, et al. Deep learning intervention for health care challenges: Some biomedical domain considerations. JMIR Mhealth Uhealth, 2019, 7(8): e11966 doi: 10.2196/11966
|
[19] |
Tobore I, Li J, Kandwal A, et al. Statistical and spectral analysis of ECG signal towards achieving non-invasive blood glucose monitoring. BMC Med Inform Decis Mak, 2019, 19(Suppl6): 266
|
[20] |
Chen W, Xie X S, Wang J L, et al. A comparative study of logistic model tree, random forest, and classification and regression tree models for spatial prediction of landslide susceptibility. CATENA, 2017, 151: 147 doi: 10.1016/j.catena.2016.11.032
|
[21] |
楊恒博, 吳行偉, 袁蓉, 等. 2型糖尿病血糖控制預測模型及列線圖的建立與驗證[J/OL]. 成都醫學院學報(2020-7-22) [2020-12-30]. http://kns.cnki.net/kcms/detail/51.1705.R.20200722.1640.004.html.
Yang H B, Wu X W, Yuan R, et al. Establishment and verification of the prediction model and nomogram for type 2 diabetes blood glucose control [J/OL]. J Chengdu Med College (2020-7-22) [2020-12-30]. http://kns.cnki.net/kcms/detail/51.1705.R.20200722.1640.004.html.
|
[22] |
滕建麗, 容芷君, 許瑩, 等. 基于GRU網絡的血糖預測方法研究. 計算機應用與軟件, 2020, 37(10):107 doi: 10.3969/j.issn.1000-386x.2020.10.017
Teng J L, Rong Z J, Xu Y, et al. Blood glucose prediction method based on gru. Comput Appl Softw, 2020, 37(10): 107 doi: 10.3969/j.issn.1000-386x.2020.10.017
|
[23] |
Seyd A P T, Joseph P K, Jacob J. Automated diagnosis of diabetes using heart rate variability signals. J Med Syst, 2012, 36(3): 1935 doi: 10.1007/s10916-011-9653-x
|
[24] |
Acharya U R, Fujita H, Oh S L, et al. Application of deep convolutional neural network for automated detection of myocardial infarction using ECG signals. Inf Sci, 2017, 415-416: 190 doi: 10.1016/j.ins.2017.06.027
|
[25] |
Ashiquzzaman A, Tushar A K, Islam M R, et al. Reduction of overfitting in diabetes prediction using deep learning neural network//IT Convergence and Security 2017. Singapore, 2017: 35
|
[26] |
Swapna G, Acharya R U, Vinithasree S, et al. Automated detection of diabetes using higher order spectral features extracted from heart rate signals. Intell Data Anal, 2013, 17(2): 309 doi: 10.3233/IDA-130580
|
[27] |
Porumb M, Griffen C, Hattersley J, et al. Nocturnal low glucose detection in healthy elderly from one-lead ECG using convolutional denoising autoencoders. Biomed Signal Process Control, 2020, 62: 102054 doi: 10.1016/j.bspc.2020.102054
|
[28] |
Yannakoulia M, Lykou A, Kastorini C M, et al. Socio-economic and lifestyle parameters associated with diet quality of children and adolescents using classification and regression tree analysis: The DIATROFI study. Public Health Nutr, 2016, 19(2): 339 doi: 10.1017/S136898001500110X
|
[29] |
袁傳新, 賈東寧, 周生輝. 卷積神經網絡在礦區預測中的研究與應用. 工程科學學報, 2020, 42(12):1597
Yuan C X, Jia D N, Zhou S H. Research and application of convolutional neural network in mining area prediction. Chin J Eng, 2020, 42(12): 1597
|