• Volume 43 Issue 9
    Sep.  2021
    Turn off MathJax
    Article Contents
    LI Ting, YE Song, LI Jing-zhen, MA Jing-jing, LU Yao-peng, HONG Pei-tao, NIE Ze-dong. High accuracy blood glucose monitoring based on ECG signals[J]. Chinese Journal of Engineering, 2021, 43(9): 1215-1223. doi: 10.13374/j.issn2095-9389.2021.01.12.009
    Citation: LI Ting, YE Song, LI Jing-zhen, MA Jing-jing, LU Yao-peng, HONG Pei-tao, NIE Ze-dong. High accuracy blood glucose monitoring based on ECG signals[J]. Chinese Journal of Engineering, 2021, 43(9): 1215-1223. doi: 10.13374/j.issn2095-9389.2021.01.12.009

    High accuracy blood glucose monitoring based on ECG signals

    doi: 10.13374/j.issn2095-9389.2021.01.12.009
    More Information
    • Corresponding author: E-mail: zd.nie@siat.ac.cn
    • Received Date: 2021-01-12
      Available Online: 2021-08-30
    • Publish Date: 2021-09-18
    • Continuous glucose monitoring is important in the management of diabetes. According to statistics, diabetes is the third chronic non-infectious disease that seriously endangers people's health, followed by tumor as well as cardiovascular and cerebrovascular diseases. In 2019, globally, there were a total of 460 million diabetics aged 20–79 years, which accounted for 9.1% of the total population in this cohort. Each figure is projected to increase to 592 million and by 10.1% respectively by 2035. Currently, the methods of blood glucose monitoring can be divided into invasive, minimally invasive, and noninvasive. The main methods for blood glucose monitoring include irregular sampling of fingertip blood or consecutive measurement of interstitial fluid glucose based on implantable sensors. However, these methods have some limitations, which include pain sensation, high cost, short service life, and susceptibility. Patients need to measure their blood glucose frequently. Invasive and minimally invasive monitoring will cause physical and psychological pain. Therefore, noninvasive monitoring is one of the most promising techniques for continuous monitoring of blood glucose, and it has a broad market prospect. In this study, the electrocardiogram (ECG signals) were used to achieve the noninvasive monitoring of blood glucose levels. First, 756160 ECG periodic signals of 12 volunteers for 60 d were obtained from the experiment. Second, the ECG signals were preprocessed using an infinite impulse response filter. Furthermore, a method combining convolutional neural networks and long short-term memory networks (CNN-LSTM) was proposed for blood glucose monitoring. In Addition, two modeling methods (individual modeling and group modeling) were investigated in this study. The results show that the precision of blood glucose monitoring under the condition of individual and group modeling is 80% and 88%, respectively. The F1-score of the group modeling can reach 0.95, 0.88, 0.91, 0.85, 0.92, 0.88, 0.86, 0.86, 0.87, and 0.86. Therefore, this study indicates that the proposed method based on ECG signals can provide powerful theoretical support and technical guidance for real-time and accurate blood glucose monitoring.

       

    • loading
    • [1]
      萬曉珊. 2型糖尿病的危險因素及干預綜述. 中國社會醫學雜志, 2006, 23(4):251 doi: 10.3969/j.issn.1673-5625.2006.04.019

      Wan X S. Review of the risk factors and intervention of type 2 diabetes. Chin J Soc Med, 2006, 23(4): 251 doi: 10.3969/j.issn.1673-5625.2006.04.019
      [2]
      鄭成竹, 丁丹. 中國糖尿病外科治療專家指導意見(2010). 中國實用外科雜志, 2011, 31(1):54

      Zheng C Z, Ding D. Guiding opinions of Chinese diabetes surgery experts (2010). Chin J Pract Surg, 2011, 31(1): 54
      [3]
      侯清濤, 李蕓, 李舍予, 等. 全球糖尿病疾病負擔現狀. 中國糖尿病雜志, 2016, 24(1):92 doi: 10.3969/j.issn.1006-6187.2016.01.023

      Hou Q T, Li Y, Li S Y, et al. The global burden of diabetes mellitus. Chin J Diabetes, 2016, 24(1): 92 doi: 10.3969/j.issn.1006-6187.2016.01.023
      [4]
      鄭忠駿. 連續血糖監測系統在危重患者中應用的初步研究[學位論文]. 杭州: 浙江大學, 2016.

      Zheng Z J. Application of Continuous Glucose Monitoring System in Critical Illness: A Preliminary Study [Dissertation]. Hangzhou: Zhejiang University, 2016
      [5]
      韋哲, 張秉璽, 石恒兵, 等. 無創血糖檢測技術的發展. 中國醫學裝備, 2020, 17(12):196 doi: 10.3969/J.ISSN.1672-8270.2020.12.046

      Wei Z, Zhang B X, Shi H B, et al. The development of noninvasive detection technique of blood glucose. China Med Equip, 2020, 17(12): 196 doi: 10.3969/J.ISSN.1672-8270.2020.12.046
      [6]
      王麗蘋. 融合領域知識的心電圖分類方法研究[學位論文]. 上海: 華東師范大學, 2013.

      Wang L P. Study on Approach of ECG Classification with Domain Knowledge [Dissertation]. Shanghai: East China Normal University, 2013
      [7]
      劉澄玉, 楊美程, 邸佳楠, 等. 穿戴式心電: 發展歷程、核心技術與未來挑戰. 中國生物醫學工程學報, 2019, 38(6):641 doi: 10.3969/j.issn.0258-8021.2019.06.001

      Liu C Y, Yang M C, Di J N, et al. Wearable ECG: History, key technologies and future challenges. Chin J Biomed Eng, 2019, 38(6): 641 doi: 10.3969/j.issn.0258-8021.2019.06.001
      [8]
      王建華. 高血糖、低血糖各有哪些危害. 心血管病防治知識, 2016(4):19

      Wang J H. What are the hazards of hyperglycemia and hypoglycemia. Prevent treat cardiovasc, 2016(4): 19
      [9]
      Acharya U R, Fujita H, Lih O S, et al. Automated detection of coronary artery disease using different durations of ECG segments with convolutional neural network. Knowl Based Syst, 2017, 132: 62 doi: 10.1016/j.knosys.2017.06.003
      [10]
      Pfeifer M A, Cook D, Brodsky J, et al. Quantitative evaluation of cardiac parasympathetic activity in normal and diabetic man. Diabetes, 1982, 31(4pt1): 339
      [11]
      Porumb M, Stranges S, Pescapè A, et al. Precision medicine and artificial intelligence: A pilot study on deep learning for hypoglycemic events detection based on ECG. Sci Rep, 2020, 10: 170 doi: 10.1038/s41598-019-56927-5
      [12]
      Jin X F, Liu C H, Xu T L, et al. Artificial intelligence biosensors: Challenges and prospects. Biosens Bioelectron, 2020, 165: 112412 doi: 10.1016/j.bios.2020.112412
      [13]
      Tobore I, Kandwal A, Li J Z, et al. Towards adequate prediction of prediabetes using spatiotemporal ECG and EEG feature analysis and weight-based multi-model approach. Knowl Based Syst, 2020, 209: 106464 doi: 10.1016/j.knosys.2020.106464
      [14]
      Kandhasamy J P, Balamurali S. Performance analysis of classifier models to predict diabetes mellitus. Procedia Comput Sci, 2015, 47: 45 doi: 10.1016/j.procs.2015.03.182
      [15]
      Tafa Z, Pervetica N, Karahoda B. An intelligent system for diabetes prediction//2015 4th Mediterranean Conference on Embedded Computing (MECO). Budva, 2015: 378
      [16]
      劉宇巍. 基于PPG和ECG信號融合的無創血糖檢測方法研究[學位論文]. 廣州: 廣東工業大學, 2018.

      Liu Y W. Research on Non-Invasive Blood Glucose Detection Based on PPG and ECG Fusion Signal [Dissertation]. Guangzhou: Guangdong University of Technology, 2018
      [17]
      馮培華. 基于信號處理技術的無創血糖估計研究[學位論文]. 廣州: 廣東工業大學, 2019.

      Feng P H. Research on Blood Glucose Estimation Based on Signal Processing Technology [Dissertation]. Guangzhou: Guangdong University of Technology, 2019
      [18]
      Tobore I, Li J, Yuhang L, et al. Deep learning intervention for health care challenges: Some biomedical domain considerations. JMIR Mhealth Uhealth, 2019, 7(8): e11966 doi: 10.2196/11966
      [19]
      Tobore I, Li J, Kandwal A, et al. Statistical and spectral analysis of ECG signal towards achieving non-invasive blood glucose monitoring. BMC Med Inform Decis Mak, 2019, 19(Suppl6): 266
      [20]
      Chen W, Xie X S, Wang J L, et al. A comparative study of logistic model tree, random forest, and classification and regression tree models for spatial prediction of landslide susceptibility. CATENA, 2017, 151: 147 doi: 10.1016/j.catena.2016.11.032
      [21]
      楊恒博, 吳行偉, 袁蓉, 等. 2型糖尿病血糖控制預測模型及列線圖的建立與驗證[J/OL]. 成都醫學院學報(2020-7-22) [2020-12-30]. http://kns.cnki.net/kcms/detail/51.1705.R.20200722.1640.004.html.

      Yang H B, Wu X W, Yuan R, et al. Establishment and verification of the prediction model and nomogram for type 2 diabetes blood glucose control [J/OL]. J Chengdu Med College (2020-7-22) [2020-12-30]. http://kns.cnki.net/kcms/detail/51.1705.R.20200722.1640.004.html.
      [22]
      滕建麗, 容芷君, 許瑩, 等. 基于GRU網絡的血糖預測方法研究. 計算機應用與軟件, 2020, 37(10):107 doi: 10.3969/j.issn.1000-386x.2020.10.017

      Teng J L, Rong Z J, Xu Y, et al. Blood glucose prediction method based on gru. Comput Appl Softw, 2020, 37(10): 107 doi: 10.3969/j.issn.1000-386x.2020.10.017
      [23]
      Seyd A P T, Joseph P K, Jacob J. Automated diagnosis of diabetes using heart rate variability signals. J Med Syst, 2012, 36(3): 1935 doi: 10.1007/s10916-011-9653-x
      [24]
      Acharya U R, Fujita H, Oh S L, et al. Application of deep convolutional neural network for automated detection of myocardial infarction using ECG signals. Inf Sci, 2017, 415-416: 190 doi: 10.1016/j.ins.2017.06.027
      [25]
      Ashiquzzaman A, Tushar A K, Islam M R, et al. Reduction of overfitting in diabetes prediction using deep learning neural network//IT Convergence and Security 2017. Singapore, 2017: 35
      [26]
      Swapna G, Acharya R U, Vinithasree S, et al. Automated detection of diabetes using higher order spectral features extracted from heart rate signals. Intell Data Anal, 2013, 17(2): 309 doi: 10.3233/IDA-130580
      [27]
      Porumb M, Griffen C, Hattersley J, et al. Nocturnal low glucose detection in healthy elderly from one-lead ECG using convolutional denoising autoencoders. Biomed Signal Process Control, 2020, 62: 102054 doi: 10.1016/j.bspc.2020.102054
      [28]
      Yannakoulia M, Lykou A, Kastorini C M, et al. Socio-economic and lifestyle parameters associated with diet quality of children and adolescents using classification and regression tree analysis: The DIATROFI study. Public Health Nutr, 2016, 19(2): 339 doi: 10.1017/S136898001500110X
      [29]
      袁傳新, 賈東寧, 周生輝. 卷積神經網絡在礦區預測中的研究與應用. 工程科學學報, 2020, 42(12):1597

      Yuan C X, Jia D N, Zhou S H. Research and application of convolutional neural network in mining area prediction. Chin J Eng, 2020, 42(12): 1597
    • 加載中

    Catalog

      通訊作者: 陳斌, bchen63@163.com
      • 1. 

        沈陽化工大學材料科學與工程學院 沈陽 110142

      1. 本站搜索
      2. 百度學術搜索
      3. 萬方數據庫搜索
      4. CNKI搜索

      Figures(4)  / Tables(7)

      Article views (1646) PDF downloads(168) Cited by()
      Proportional views
      Related

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return
      中文字幕在线观看